336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

세 번째 프로젝트 순서 

 

1. 식물 병충해 자료 파일분류

2. CNN 모델링

3. 이미지화

4. CNN, AlexNet, VGG-16 모델 평가


언어 : Python

패키지 : Tensorflow, Keras, NumPy, Maplotlib

툴 : Colab, PyCharm, Jupyter Notebook

 

여러가지 주제를 가지고 고민을 하다가 딥러닝을 제대로 배우지도 않은 상태에서 진행을 하려고 해서 쉽지 않았다. 그래서 이런 저런 자료들을 찾아보다가 '정보통신산업진흥원 주최  2020 인공지능 문제해결 경진대회 예선 문제' 데이터셋이 있어서 배운 것을 적용해보는 시간을 가지려고 했다.

 

 

 

train 데이터가 16000개, test 데이터가 3997개로 구성되어 있었다. 하지만 test 데이터는 라벨링이 되어있지 않아서, 모델을 학습시킨다고 해서 딥러닝 모델이 얼마나 좋은지 성능을 평가할 수 없었다. 대회 자체가 워낙 폐쇄적이라서 현재 데이터도 이미 가지고 있던 팀원이 있어서 구할 수 있었다. 직접 전화도 해봤지만 정답을 알려주긴 어렵다는 말을 들었다. 그래서 추후에 데이터를 따로 수집을 했다.

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
plant_label = ["Apple""Blueberry""Cherry_(including_sour)""Corn_(maize)",
              "Grape""Orange""Peach""Pepper,_bell""Potato""Raspberry",
              "Soybean""Squash""Strawberry""Tomato"]
 
disease_label = ["Apple_scab""Bacterial_spot""Black_rot""Cedar_apple_rust",
                 "Cercospora_leaf_spot_Gray_leaf_spot""Common_rust_",
                 "Early_blight""Esca_(Black_Measles)""Haunglongbing_(Citrus_greening)",
                 "Late_blight""Leaf_Mold""Leaf_blight_(lsariopsis_Leaf_Spot)",
                 "Leaf_scorch""Northem_Leaf_Blight""Powdery_mildew""Septoria_leaf_spot",
                 "Spider_mites_Two-spotted_spider_mite""Target_Spot",
                 "Tomato_Yellow_Leaf_Curl_Virus""Tomato_mosaic_virus""healthy"]
 
combined_labels = ["Corn_(maize)_Common_rust_""Corn_(maize)_healthy""Grape_Black_rot",
                   "Grape_Esca_(Black_Measles)""Grape_Leaf_blight_(lsariopsis_Leaf_Spot)",
                   "Orange_Haunglongbing_(Citrus_greening)""Pepper,_bell_Bacterial_spot",
                   "Pepper,_bell_healthy""Potato_Early_blight""Potato_Late_blight",
                   "Soybean_healthy""Squash_Powdery_mildew""Tomato_Bacterial_spot",
                   "Tomato_Early_blight""Tomato_Late_blight""Tomato_Septoria_leaf_spot",
                   "Tomato_Spider_mites_Two-spotted_spider_mite""Tomato_Target_Spot",
                   "Tomato_Tomato_Yellow_Leaf_Curl_Virus""Tomato_healthy"]
len(combined_labels)


####################################################################################
#라벨 폴더 생성
import shutil, glob, os
path = "./train"
if not os.path.isdir(path):                                                           
    os.mkdir(path)
 
for i in range(len(combined_labels)):
    path2 = f"./train/{combined_labels[i]}"
    if not os.path.isdir(path2):                                                           
        os.mkdir(path2)
 
 
####################################################################################
#사진 폴더별로 복사붙여넣기 
path_data = './eda/식물병충해data/train'
file_list = os.listdir(path_data)
 
#plant_label 딕셔너리
list1 = list(range(14))
dict1 = dict(zip(list1,plant_label))
 
#disease_label 딕셔너리
list2 = list(range(21))
dict2 = dict(zip(list2,disease_label))
 
#
for i in range(16000):
    cl_list = file_list[i][:-4].split('_'#이름을 나누기 plant + disease + 번호
    find_name = dict1.get(int(cl_list[0])) + '_' + dict2.get(int(cl_list[1])) #Combined Labels 이름 찾기
    if file_list[i] not in path_data :
        shutil.copy(f'{path_data}/{file_list[i]}', f'{path}/{find_name}')
    #print('복사완료')
cs

폴더명이 숫자 클래스로 필요할 수도 있고 combined_labels로 필요할 수도 있어서 폴더명을 바꾸기 쉽게 수정하는 코드를 추가했다. 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#class name으로 변경
from os import rename, listdir
 
path = "./train"
 
list3 = list(str(i) for i in range(20))
dict3 = dict(zip(combined_labels,list3))
 
for fname in os.listdir(path):
    newname = dict3.get(fname)
    if newname not in os.listdir(path) :    
        os.rename(os.path.join(path, fname), os.path.join(path,newname))
print("class name으로 변경완료")
 
 
 
#labeled_name으로 되돌리고 싶을 때
list3 = list(str(i) for i in range(20))
dict3 = dict(zip(list3, combined_labels))
 
for fname in os.listdir(path):
    newname = dict3.get(fname)
    if newname not in os.listdir(path) :    
        os.rename(os.path.join(path, fname), os.path.join(path,newname))
print("labeled name으로 변경완료")
cs

 

 

 

 

반복해서 학습을 위해서 numpy 배열을 npy 파일로 저장을 하려고 했다. 하지만 모든 팀원들 컴퓨터 사양이 좋지 않아서 이미지 사이즈를 128x128로 하려다가 다들 맛이 가서 64x64로 어쩔 수 없이 저장했다.. ㅠㅠㅠ

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
import os, re, glob
import cv2
import numpy as np
from sklearn.model_selection import train_test_split
  
groups_folder_path = './train/'
categories = list(str(i) for i in range(20))
 
num_classes = len(categories)
  
image_w = 64
image_h = 64
  
= []
= []
  
for idex, categorie in enumerate(categories):
    label = [0 for i in range(num_classes)]
    label[idex] = 1
    image_dir = groups_folder_path + categorie + '/'
  
    for top, dir, f in os.walk(image_dir):
        for filename in f:
            print(image_dir+filename)
            img = cv2.imread(image_dir+filename)
            img = cv2.resize(img, dsize=(image_w, image_h))
            X.append(img/256)
            Y.append(label)
 
= np.array(X)
= np.array(Y)
 
X_train, X_test, Y_train, Y_test = train_test_split(X,Y)
xy = (X_train, X_test, Y_train, Y_test)
 
np.save("./img_data.npy", xy)
cs

#NumPy 배열을 npy 외부 파일로 저장

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

두번째 프로젝트 순서

1. 프로젝트 주제 정하기

2. 기획 및 데이터 수집, 전처리

3. 데이터 저장(판다스 열/행 관련 정리)

4. 시각화 및 자동화


프로젝트 마무리

매 10분마다 크롤링을 진행하고, 19시가 되면 이슈와 사설을 이메일로 보내준다. 자동화는 코드가 어디있는지 주섬주섬 다시 찾아봐야 한다 ㅠㅠ. 진행을 이슈파트 따로 사설파트 따로 해서, 사설은 어떤 식으로 코드 진행이 됐는지 잘 모르겠지만 나쁘지 않은 결과가 나왔다.

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
import os
from datetime import datetime
 
base_dir = 'C:/Workspace/project2_final/output/'
os.makedirs(base_dir, exist_ok=True)
 
from wordcloud import WordCloud
wc = WordCloud(font_path=r'C:\Windows\Fonts\MalgunBD.ttf',background_color="white",
               max_words=150, max_font_size=300, width=800, height=800)
cloud = wc.generate_from_frequencies(dict(sum_search))
 
cloud.to_file(base_dir+'IssueKeyWord '+ datetime.today().strftime('%Y%m%d'+ '.png')
 
cs

하루 일정이 마무리 되면 실시간 TOP100개의 키워드와 언급된 게시물 조회수의 비중에 따라 워드클라우드를 생성한다.

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#### 상위 5개 키워드 ####
 
df = pd.read_excel(path2, header=[0,1], index_col=[0] )
df_col = list(df.columns.levels[0])
 
hit_top5 = []
 
for i in df_col :
    hit_max = df[i,'조회수'].max()
    hit_top5.append(hit_max)
 
hit_dict = dict(zip(df_col,hit_top5)) #딕셔너리 값으로 저장
 
keyword_top5 = sorted(hit_dict, key=hit_dict.get, reverse = True)[:5#탑 5개 keyword 추출
print(keyword_top5)
cs

 



 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#### 19시에 코드 보내기
 
import matplotlib.pyplot as plt
import seaborn as sns
 
title_font = {'fontsize'16'fontweight''bold'}
plt.rc('font',family='Malgun Gothic')
plt.figure(figsize=[20,10])
plt.style.use('ggplot')
plt.show(block=False)
plt.pause(1)
plt.close()
 
ymd = today.strftime('%Y-%m-%d'
hms = '19:00:00'
 
if hms == '19:00:00':
    path_png = "C:/Workspace/project2_final/output/graphs"
    if not os.path.isdir(path_png):                                                           
        os.mkdir(path_png)
    
    path_date = f"C:/Workspace/project2_final/output/graphs/{ymd}"
    if not os.path.isdir(path_date):                                                           
        os.mkdir(path_date)    
    
    ##### 그래프 조회수 변동 ######
    for i in keyword_top5 :
        plt.title (f"키워드 : '{i}' 조회수 변동", fontsize=20)
        df.index,df[i,'조회수'].plot( kind='bar')
        #    plt.bar(df.index,df[i,'조회수'])
        #plt.show()
        plt.savefig(f'{path_date}/조회수변동-({i}).png', bbox_inches='tight')
        plt.close()
                 #.plot( kind='bar')
 
    ##### 그래프 키워드 관심도 #####
    for i in keyword_top5 :
        text =f'{i} 키워드 관심도'
        sub_keys = df[i].groupby(['서브키워드'])['조회수'].mean().sort_values()
        plt.title(text, fontdict=title_font, loc='center', pad= 20)
        sub_keys.plot(kind='pie', autopct = '%1.1f%%', shadow = True, startangle=110 )
        #plt.show()
 
        plt.savefig(f'{path_date}/관심도-({i}).png')
        plt.close()
    
    print('그래프 시각화 완료')
cs

19시가 되면 조회수 변동, 키워드에 따른 서브 키워드가 얼마나 변했는지 확인할 수 있다. 이거는 강의실에 와서 발표전 30분 데이터를 취합해서 만든 것이라 서브 키워드 변동도 거의 없고, 조회수 변동폭도 크지 않음을 확인할 수 있다.

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import smtplib
from email.mime.multipart import MIMEMultipart;
# 메일의 본문 내용을 만드는 모듈
from email.mime.text import MIMEText;
# 메일의 첨부 파일을 base64 형식으로 변환
from email.mime.application import MIMEApplication;
# 메일의 이미지 파일을 base64 형식으로 변환(Content-ID 생성)
from email.mime.image import MIMEImage;
# 메일의 음악 파일을 base64 형식으로 변환(Content-ID 생성)
from email.mime.audio import MIMEAudio;
# 파일 IO
import io;
 
# 메일 서버와 통신하기 전에 메시지를 만든다.
data = MIMEMultipart();
# 송신자 설정
data['From'= "본인의 이메일";
# 수신자 설정 (복수는 콤마 구분이다.)
data['To'= "이메일1","이메일2";
# 메일 제목
data['Subject'= "제목"
with open("C:\\workspace\\project2_final\\mailsource\\hi.png"'rb'as fp:
    img = MIMEImage(fp.read(), Name = "hi.png")
    img.add_header('Content-ID''<hi>')
    data.attach(img)
 
with open("C:\\workspace\\project2_final\\mailsource\\issue.png"'rb'as fp:
    img = MIMEImage(fp.read(), Name = "issue.png")
    img.add_header('Content-ID''<issue>')
    data.attach(img)
    
with open("C:\\workspace\\project2_final\\mailsource\\news.png"'rb'as fp:
    img = MIMEImage(fp.read(), Name = "news.png")
    img.add_header('Content-ID''<news>')
    data.attach(img)    
    
with open("C:\\workspace\\project2_final\\mailsource\\tw.png"'rb'as fp:
    img = MIMEImage(fp.read(), Name = "tw.png")
    img.add_header('Content-ID''<tw>')
    data.attach(img)    
    
with open("C:\\workspace\\project2_final\\mailsource\\fb.png"'rb'as fp:
    img = MIMEImage(fp.read(), Name = "fb.png")
    img.add_header('Content-ID''<fb>')
    data.attach(img)    
 
with open("C:\\workspace\\project2_final\\output\\IssueKeyWord {}.png".format(datetime.today().strftime('%Y%m%d')), 'rb'as fp:
    img = MIMEImage(fp.read(), Name = "wc1.png")
    img.add_header('Content-ID''<wc1>')
    data.attach(img)
    
with open("C:\\workspace\\project2_final\\output\\KeyWord {}.png".format(datetime.today().strftime('%Y%m%d')), 'rb'as fp:
    img = MIMEImage(fp.read(), Name = "wc2.png")
    img.add_header('Content-ID''<wc2>')
    data.attach(img)
    
 
cs

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Html 형식의 본문 내용 (cid로 이미 첨부 파일을 링크했다.)
 
html = """
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
  <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
  <title>하루 이슈</title>
  <meta name="viewport" content="width=device-width, initial-scale=1.0"/>
</head>
<body style="margin: 0; padding: 0;">
 <table align="center" border="0" cellpadding="0" cellspacing="0" width="600" style="border: 1px solid #cccccc;">
 <tr>
  <td align="center" bgcolor="#bdd7ee" style="padding: 40px 0 30px 0;">
 <img src="cid:hi" alt="Creating Email Magic" width="600" height="380" style="display: block;" />
</td>
 </tr>
 <tr>
  <td bgcolor="#ffffff" style="padding: 40px 30px 40px 30px;">
<table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr>
  <td font-family: 'Noto Sans KR', sans-serif;>
   <table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr>
  <td width="260" valign="top" font-family:Noto Sans KR, sans-serif; font-size: 16px; line-height: 20px;"> 
   <h2>커뮤니티 인기 키워드 100</h2>
   <img src="cid:wc1" alt="Creating Email Magic" width="250" height="250" style="display: block;" />
  </td>
  <td style="font-size: 0; line-height: 0;" width="20">
   &nbsp;
  </td>
  <td width="260" valign="top" font-family:Noto Sans KR, sans-serif; font-size: 16px; line-height: 20px;"> 
   <h2>사설 주요 키워드 100</h2>
   <img src="cid:wc2" alt="Creating Email Magic" width="250" height="250" style="display: block;" />
  </td>
 </tr>
</table>
  </td>
 </tr>
 <tr>
  <td style="padding: 20px 0 30px 0; font-family:Noto Sans KR, sans-serif; font-size: 16px; line-height: 20px;">
   <p>오늘 하루도 수고하셨습니다. 하이와 함께 행복한 하루를 마무리하세요!</p>
   <br>
   <br>
  </td>
 </tr>
 <tr>
  <td>
  <table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr>
  <td width="260" valign="top">
   <table border="0" cellpadding="0" cellspacing="0" width="100%">
    <tr>
     <td bgcolor="#3B89A3" align="center" style="padding: 20px 30px 20px 30px;">
      <img src="cid:issue" alt="" width="50%" height="100" style="display: block;" />
     </td>
    </tr>
    <tr>
     <td style="padding: 10px 0 30px 0; font-family:Noto Sans KR, sans-serif; font-size: 16px; line-height: 20px;"> 
     <h3 style="font-family:Noto Sans KR, sans-serif;">오늘의 커뮤니티 인기 키워드</h3>
      <details><p style="line-height:180%">{1}</p>
       <summary>{0}
       </summary>
      </details>
      <br>
      <details><p style="line-height:180%">{3}</p>
       <summary>{2}
       </summary>
      </details>
      <br>
      <details><p style="line-height:180%">{5}</p>
       <summary>{4}
       </summary>
      </details>
      <br>
      <details><p style="line-height:180%">{7}</p>
       <summary>{6}
       </summary>
      </details>
      <br>
      <details><p style="line-height:180%">{9}</p>
       <summary>{8}
       </summary>
      </details>
     </td>
    </tr>
   </table>
  </td>
  <td style="font-size: 0; line-height: 0;" width="20">
   &nbsp;
  </td>
  <td width="260" valign="top">
   <table border="0" cellpadding="0" cellspacing="0" width="100%">
    <tr>
     <td bgcolor="#3B89A3" align="center" style="padding: 20px 30px 20px 30px;">
      <img src="cid:news" alt="" width="50%" height="100" style="display: block;" />
     </td>
    </tr>
    <tr>
     <td style="padding: 10px 0 30px 0; font-family:Noto Sans KR, sans-serif; font-size: 16px; line-height: 20px;"> 
     <h3 style="font-family:Noto Sans KR, sans-serif;">오늘의 사설 주요 키워드</h3>
      <details><p style="line-height:180%">{11}</p>
       <summary>{10}
       </summary>
      </details>
      <br>
      <details><p style="line-height:180%">{13}</p>
       <summary>{12}
       </summary>
      </details>
      <br>
      <details><p style="line-height:180%">{15}</p>
       <summary>{14}
       </summary>
      </details>
      <br>
      <details><p style="line-height:180%">{16}</p>
       <summary>오늘 자주 등장한 키워드
       </summary>
      </details>
      
     </td>
    </tr>
   </table>
  </td>
 </tr>
</table>
  </td>
 </tr>
</table>
</td>
 </tr>
 <tr>
  <td bgcolor="#bdd7ee" style="padding: 30px 30px 30px 30px;">
 <table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr>
 <td width="75%"; style="color: #000000; font-family: Arial, sans-serif; font-size: 14px;">
 &reg; 하루이슈, Hi 2021<br/>
 <a href="" style="color: #000000;"><font color="#000000">Unsubscribe</font></a> to this newsletter instantly
</td>
  <td align="right">
 <table border="0" cellpadding="0" cellspacing="0">
  <tr>
   <td>
    <a href="http://www.twitter.com/">
     <img src="cid:tw" alt="Twitter" width="38" height="38" style="display: block;" border="0" />
    </a>
   </td>
   <td style="font-size: 0; line-height: 0;" width="20">&nbsp;</td>
   <td>
    <a href="http://www.facebook.com/">
     <img src="cid:fb" alt="Facebook" width="38" height="38" style="display: block;" border="0" />
    </a>
   </td>
  </tr>
 </table>
</td>
 </tr>
</table>
</td>
 </tr>
</table>
</body>
 
</html>
""".format(keyword_top5[0], articlestr1, keyword_top5[1], articlestr2, keyword_top5[2], articlestr3, keyword_top5[3], articlestr4, keyword_top5[4], articlestr5, sendingKeywords[0], content1, sendingKeywords[1], content2, sendingKeywords[2], content3, dfCSV["text"].tolist())
 
 
msg = MIMEText(html, 'html')
 
 
# 메시지를 확인한다.
# Data 영역의 메시지에 바운더리 추가
data.attach(msg);
print(data);
# 메일 서버와 telnet 통신 개시
server = smtplib.SMTP_SSL('smtp.naver.com',465);
#server = smtplib.SMTP('smtp.gmail.com',587);
# 메일 통신시 디버그
server.set_debuglevel(1);
# 헤로 한번 해주자.(의미 없음)
server.ehlo();
# tls 설정 주문 - tls 587 포트의 경우
#server.starttls();
# 헤로 또 해주자.(의미 없음)
server.ehlo();
# 로그인 한다.
server.login("ID", "P/W!"); # 아이디, 패스워드 입력
# 심심하니 또 헤로 해주자.(의미 없음)
server.ehlo();
# MAIL(송신자) 설정
sender = data['From'];
# RCPT(수신자), 리스트로 보낸다.
# 수신자 추가
receiver = data['To'].split(",");
# # 참조자 추가
# if data['Cc'] is not None:
#     receiver += data['Cc'].split(",");
# # 숨은 참조자 추가
# if data['Bcc'] is not None:
#     receiver += data['Bcc'].split(",");
# 메일 프로토콜 상 MAIL, RCPT, DATA 순으로 메시지를 보내야 하는데 이걸 sendmail함수에서 자동으로 해준다.
server.sendmail(sender, receiver, data.as_string());
# QUIT을 보내고 접속을 종료하고 메일을 보낸다.
server.quit();
 
cs

 

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

두번째 프로젝트 순서

1. 프로젝트 주제 정하기

2. 기획 및 데이터 수집, 전처리

3. 데이터 저장(판다스 열/행 관련 정리)

4. 시각화 및 자동화


데이터를 어떤 식으로 저장할지에 대해서 고민이 많았다. 구글링을 엄청 많이 했는데 잘 나오지 않아서, 영어로도 검색을 많이 했다. 한 열 안에 2개의 정보(멀티인덱스)가 들어가야 했고, 새로운 행이 생성될 때 계속 새로운 열이 생성됐기 때문에 쉽지 않았다. 그래서 판다스(pandas) 관련 개념을 정리해보려고 한다.

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#pandas 개념 정리
 
'''
df_review_one_sentence는 컬럼이 titles(제목), reviews(리뷰)로 구성이 됐다.
 
[info]
 #   Column   Non-Null Count  Dtype 
---  ------   --------------  ----- 
 0   titles   3498 non-null   object
 1   reviews  3498 non-null   object
 
[head]
                                             titles                                            reviews
0  13시간 (13 Hours: The Secret Soldiers of Benghazi)  토요일 내리다 황사 몰아치다 일요일 오전 난생 처음 홍대 찾다 파괴 마이클 베이 형...
1    1942: 최정예특수부대 스페츠나츠 (The Dawns Here Are Quiet)  처음 리뷰 킬링타임 용이 땡기다 빠지다 듭니 처음 부분 별로 여군 샤워 커버 해주다...
2                                       33 (The 33)  패트리시아 리건 출연 안토니오 라스 로드 산토 줄리엣 비노 미국 칠레 평점 리뷰 예...
3                          400번의 구타 (The 400 Blows)  달리기 어딘에선 달아나다 모습 기억 남다 처음 만난 우산 가지 오지 내리다 기다 흡...
4                                  45년 후 (45 Years)  압구정 괜찮다 거짓말 괜찮다 괜찮다 괜찮다 살아가다 많다 괜찮다 외치다 괜찮다 괜찮...
 
iloc => 행번호로 선택
loc => 라벨이나 조건으로 선택
'''
 
print(df_review_one_sentence.iloc[0]) # 첫번째 행만 추출 => 제목, 리뷰 다나옴
print(df_review_one_sentence.iloc[0,1]) #첫번째 행, 1번 열  / 요소 1개 뽑기 - 리뷰만 나옴
print(df_review_one_sentence.iloc[0:5,0]) # 1~5번째 행의 제목 5개
print(df_review_one_sentence.loc[:, 'titles']) #컬럼명으로 보겠다 / 모든 제목이 출력된다.
print(df_review_one_sentence['titles'][0]) #타이틀에 0번째

df.iloc[row,col] 숫자로
df.loc['Tom','math'] 컬럼명으로
cs
1
2
3
4
5
6
7
8
9
# enumerate 정리
ls = ['겨울왕국','라이온킹','알라딘']
print(list(enumerate(ls))) #튜플 리스트로 보여줌 / [(0, '겨울왕국'), (1, '라이온킹'), (2, '알라딘')]
for idx,i in enumerate(ls) : #0 겨울왕국, 1 라이온킹, 2 알라딘 출력 / 인덱스 값 같이 보여줌
    print(idx, i)
 
for idx, i in enumerate(ls):
    if i == '라이온킹':
        print(idx)
cs

 

 

 

 

1-4. 파이썬 EDA 데이터 분석 팀 프로젝트 판다스, 시각화 (Matplotlib, Json)

- 첫 프로젝트 글 순서 - 1. 파이썬(python) EDA 데이터분석 주제 정하기 2. 실패한 여기어때 후기 웹스크래핑(web scraping) 3. 데이터 수집 방법 & 데이터 추출, 정제 4. 판다스(pandas) 데이터 처리 / Matpl.

0goodmorning.tistory.com

특정 값을 추출하고 groupbpy를 통해서 묶거나 더하는 것이 필요하다면 이전 코드를 한 번 참조해주세요! 와 근데 지금 다시 보니까 진짜 코드가 엉망진창인 것 같습니다.. 첫번째에 비해 두번째 프로젝트 코드가 훨씬 나아진 것 같고, 현재는 더 나아졌다고 생각이 든다.

이제부터는 안 됐던 코드들을 같이 첨부하려고 합니다. 보시면서 여러분들은 같은 실수는 하지 말아주세요 ㅠㅠㅠ

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
##### 엑셀파일 생성될 때 기본 틀 갖추기 ####
 
import pandas as pd
import numpy as np
from itertools import chain
 
def frame(key_list, day1, day2, path2) :
    
    key_lists = list(chain.from_iterable(zip(key_list,key_list))) #key_list_1로 설정해서 기준을 만들어줘야 함
    multi_key = ['조회수','서브키워드']
    multi_keys = ['조회수','서브키워드'* len(key_list)
 
    range = pd.date_range(f'{day1} 19:00:00',f'{day2} 18:50:00', freq='10min'
    df = pd.DataFrame(columns = [key_lists, multi_keys],index = range)
    
    df.to_csv(f'{path2}', index=False, encoding='UTF-8-sig')
    
    print('저장완료')
cs

처음에는 이런 식으로 먼저 19시부터 익일 18시 50분(def 함수 만들기 전 사진이라 19시까지 들어갔네요. 19시 기준은 퇴근 시간 기준으로 집에 가는 길이나 집에서 하루 이슈를 마무리할 수 있게 잡았습니다.)까지 데이터를 만들어서 저장을 하는 방식인데 고려할 것이 여러개 생겼습니다.

 

 

 

파일을 불러올 경우에 멀티인덱스가 제대로 안 보여지는 것 같습니다. 한강 한강이 병합돼서 하나의 한강 밑에 조회수/ 서브키워드가 있어야 하는데 Unnamed: 0, Unnamed: 2, Unnamed: 4 이런 식으로 생성되는 것을 확인할 수 있습니다. 그리고 시간 마다 새로운 열이 추가되고, 기존 열은 또 사용을 해서 기존 열에 있으면 새로운 열을 생성하는 식의 코드를 짜봤는데 계속 에러가 떠서 포기했습니다. 

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import pandas as pd
import numpy as np
 
 
df1 = pd.read_excel(path2, header=[0,1], index_col=[0] )
 
 
# 조회수, 서브 키워드 입력
def jos(i, t) :
    df.loc[t][(i,'조회수')] = sum_search[i]
    df.loc[t][(i,'서브키워드')] = sub_key[i]
    
= '2021-05-04 19:20:00' #현재 시간 설정
 
for i in sum_search : 
    if i not in key_list_1 :  # 기준이 되는 key_list 값에 없을 경우 열 추가
        a = [i]
        df = df.join(pd.DataFrame(columns=pd.MultiIndex.from_product([a, multi_key]),index=df.index))
        jos(i, t)
    else :
        jos(i, t)
        
df.to_csv(path2)
cs

이런 식으로 진행을 하려고 했는데 조회만 추가가 되고 서브키워드는 추가가 안 되는 문제가 발생했습니다.

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import pandas as pd
import numpy as np
 
#복제
from itertools import chain
key_lists = list(chain.from_iterable(zip(key_list,key_list))) #key_list_1로 설정해서 기준을 만들어줘야 함
multi_key = ['조회수','서브키워드']
multi_keys = ['조회수','서브키워드'* len(key_list)
 
# 조회수, 서브 키워드 입력
def jos(i, time) :
    df.loc[time][(i,'조회수')] = sum_search[i]
    df.loc[time][(i,'서브키워드')] = sub_key[i]
    
# generate time series index
range = pd.date_range('05-03-21''05-04-21', freq='10min')              # if문 7~ +1 6시50분 시간을 기준으로 삼아서
df = pd.DataFrame(columns = [key_lists, multi_keys],index = range)
 
time = "2021-05-03 00:10:00" #현재 시간 설정
 
 
 
for i in sum_search : 
    if i not in key_lists :
        a = [i]
        df = df.join(pd.DataFrame(columns=pd.MultiIndex.from_product([a, multi_key]),index=df.index))
        jos(i, time)
    else :
        jos(i, time)
df
cs

코드를 바꿔서 진행했는데 이제는 조회수와 서브키워드에 채워지는 것을 확인할 수 있습니다. 그런데 또 시간이 바뀌고 새로운 데이터를 크콜링하게 되면 오류가 나가너 코드가 복잡해져서 방법을 더 찾았습니다.

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
#### 행 생성 ####
import pandas as pd
import numpy as np
from itertools import chain
 
#복제
key_lists = list(chain.from_iterable(zip(key_list,key_list))) #멀티 인덱스를 위해서 [a,b,c] => [a,a,b,b,c,c] 로 만들어줌
multi_keys = ['조회수','서브키워드'* len(key_list)
 
# 조회수, 서브 키워드 입력
def hit_sub(i, time) :
    df1.loc[time][(i,'조회수')] = sum_search[i]
    df1.loc[time][(i,'서브키워드')] = sub_key[i]
    
# generate time series index
time = nowDatetime    #현재 시간 설정
 
df1 = pd.DataFrame(columns = [key_lists, multi_keys],index = [time])
 
for i in sum_search : 
    hit_sub(i, time)
    
#### 다음 행에 추가 ####
df = pd.read_excel(path2, header=[0,1], index_col=[0] )   #number 해결
df = df.append(df1, sort=False)    #컬럼 수가 다를 때 NaN 값을 넣고 행 추가
cs

if 문을 사용하지 않고 멀티 인덱스가 있는 상황에서, 새로운 행과 열이 생성되고, 기존 열은 유지되는 함수

=> append를 사용하시면 됩니다!!!

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
#subject 디렉토리내 파일 삭제하기
 
import shutil
 
pathTest = r"C:/Workspace/project2_final/output/temp"
 
try:
    shutil.rmtree(pathTest)
except OSError as e:
    print(e)
else:
    print("The directory is deleted successfully")
 
 
#### 새로운 파일 생성 ###
 
import os
from datetime import datetime, date, time, timedelta
import datetime
import openpyxl
import pickle
 
#디렉토리 폴더 생성
path = "C:/Workspace/project2_final/output"
if not os.path.isdir(path):                                                           
    os.mkdir(path)
 
 
today =datetime.datetime.now()
 
hms = today.strftime('%H:%M:%S'#시분초
ymd = today.strftime('%Y-%m-%d'#년월일  - 오늘 날짜
yesterday = (today - datetime.timedelta(1)).strftime('%Y-%m-%d'#어제날짜
 
wb = openpyxl.Workbook()
 
if hms < '19:00:00':
    file_name = yesterday
    path2 = f"C:/Workspace/project2_final/output/{file_name}.xlsx"
    
    if not os.path.isfile(path2):  
        wb.save(path2)
        print('파일 생성완료1')
 
    else :
        print('파일을 작업중입니다....')
 
else : 
    file_name = ymd
    path2 = f"C:/Workspace/project2_final/output/{file_name}.xlsx"
    
    if not os.path.isfile(path2):  
        wb.save(path2)
        print('파일 생성완료2')
 
    else :
        print('파일을 작업중입니다....')
 
cs

이런 식으로 특정 시간이 되면 새로운 폴더와 파일을 생성 하는 코드입니다.

 

 

 

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

두번째 프로젝트 순서

1. 프로젝트 주제 정하기

2. 기획 및 데이터 수집, 전처리

3. 데이터 저장(판다스 열/행 관련 정리)

4. 시각화 및 자동화


각종 커뮤니티를 모두 크롤링하기에는 시간도 없고 벅차서, 이슈링크라는 싸이트에서 이미 친절하게 각종 커뮤니티를 크롤링해주고 있어서 이슈링크 싸이트를 이용하였다. 봇을 이용하여 글들을 긁어와주는 걸로 보인다. 

 

하지만 확인 결과, 오늘의 이슈태그 Top5커뮤니티 베스트 키워드들은 실제로 다수의 사람들이 관심이 있는 것이 아니었다. 분석하기로는 얼마나 커뮤니티에서 자주 언급되는지에 따라서 순위가 올라가는 것으로 보인다.

 

그래서 다수의 사람들이 관심이 있는 키워드와 이슈거리를 어떻게 하면 찾을 수 있을까 생각하면서 파이썬 프로젝트를 진행했다.

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
#현재 시간 설정
from datetime import datetime, date, time, timedelta
 
now = datetime.now()
nowDatetime = now.strftime('%Y-%m-%d %H:%M')
print(nowDatetime)
 
 
#### 이슈 빼오기 #####
import requests
from bs4 import BeautifulSoup
 
url = 'https://www.issuelink.co.kr/community/listview/all/3/adj/_self/blank/blank/blank'
headers = {'user-agent''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36'}
html_rank = requests.get(url, headers=headers).text
soup_rank = BeautifulSoup(html_rank, 'lxml')
keywords = soup_rank.select('div.ibox.float-e-margins > div > table > tbody > tr > td > a')
 
 
key_list = []
for k in keywords:
    keyword = k.text
    key_list.append(keyword)
 
###### 7시를 기준으로 기준 리스트를 하나 만들어야 함 / datetime에서 시간 분만 빼와서 if로 비교
 
key_list.pop(0)
print(key_list)
cs

 

 

 

예측을 한 것인데 실제로 확인을 해보니 총조회수가 높지 않지만 많이 언급될 수록 상위권에 있는 것으로 확인이 됐다. 이제 이 과정을 코드로 시행.

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
### 이슈 실제 조회수 ###
 
from bs4 import BeautifulSoup
import requests
import urllib
import operator
 
sum_list = []
search_list = key_list
 
def sum(search) :
    
    url = f'https://www.issuelink.co.kr/community/listview/read/3/adj/_self/blank/{search}'
    headers = {'user-agent''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36'}
    r = requests.get(url, headers=headers)
    soup = BeautifulSoup(r.text, 'html.parser')
 
    hits = soup.select('span.hit')
    
    sum=0
    
    for hit in hits :
        sum += int(hit.text.replace(',',''))
    
    sum_list.append(sum)  
    print('*',end='')
    
for search in search_list :
    sum(search)
 
#조회수, 키워드 합치기
sum_search = dict(zip(key_list,sum_list))
 
#조회수 순으로 정렬
#a = sorted(sum_search.items(), key=lambda x:x[1], reverse = True)
 
print()
print(sum_search)
cs

이슈가 되는 키워드를 검색했을 때, 각 커뮤니티별로 얼만큼의 조회수를 보이고 있는지 확인을 했다. 문제는 각 사람들마다 성향이 있어서 특정 싸이트를 보여주면, 극도로 싫어하는 사람들이 있다. 그래서 커뮤니티 글 중에 조회수가 높은 글을 보여주기에는 애매해서, 이를 네이버 뉴스로 보여주려고 했다.

 

다만 네이버 뉴스를 예로 들었을 때, 당시 '브레이브걸스' 로션은 알테니 스킵을 아재 팬들이 몰라서 이슈가 됐었다. 하지만 당시 브레이브걸스 자체가 가지고 있는 인기가 있어서, 브레이브걸스를 뉴스에서 검색해도 이 알테니 스킵이라는 이슈와는 다른 이슈가 검색이 될 수도 있다. 그래서 서브키워드를 같이 추출하기 위해서 형태소 분석을 했다.

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#### 키워드 제목 추출 탐30 개별로 ####
 
from bs4 import BeautifulSoup
import requests
import urllib
import os
 
#디렉토리 폴더 생성
path = "./subject"
if not os.path.isdir(path):                                                           
    os.mkdir(path)
 
keyword_list=[]
 
def subject(search) :
    url = f'https://www.issuelink.co.kr/community/listview/all/3/adj/_self/blank/{search}'
    headers = {'user-agent''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.85 Safari/537.36'}
    r = requests.get(url, headers=headers)
    soup = BeautifulSoup(r.text, 'html.parser')
 
    sub = soup.select('span.title')
    
    keyword_list.clear()
    
    for i in sub :
        split_string = i.get_text().split(' [',1)
        substring = split_string[0]    
        keyword_list.append(substring)
        
    with open(f'./subject/{search}.txt','w', encoding = 'utf-8'as file :
        file.writelines(keyword_list)
    
    print('**', end="")
            
    
for search in search_list :
    subject(search)
 
print()
print('완료')
cs

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
#### 키워드 형태소 카운팅 ####
 
""" 형태소 분석기
    명사 추출 및 빈도수 체크
    python [모듈 이름] [텍스트 파일명.txt] [결과파일명.txt]
"""
 
import sys
from konlpy.tag import Twitter
from collections import Counter
 
 
def get_tags(text, ntags=50):
    spliter = Twitter()
    nouns = spliter.nouns(text)
    count = Counter(nouns)
    return_list = []
    for n, c in count.most_common(ntags):
        temp = {'tag': n, 'count': c}
        return_list.append(temp)
    return return_list
 
 
def main(search):
    # 분석할 파일
    noun_count = 50
    # count.txt 에 저장
    open_text_file = open(f'./subject/{search}.txt''r',-1,"utf-8")
    # 분석할 파일을 open 
    text = open_text_file.read() #파일을 읽습니다.
    tags = get_tags(text, noun_count) # get_tags 함수 실행
    open_text_file.close()   #파일 close
    open_output_file = open(f"./subject/{search}-count.txt"'w',-1,"utf-8")
    # 결과로 쓰일 count.txt 열기
    for tag in tags:
        noun = tag['tag']
        count = tag['count']
        open_output_file.write('{} {}\n'.format(noun, count))
    # 결과 저장
    open_output_file.close() 
 
for search in search_list :
    main(search)
    
print('완료')
 
cs

당시에 형태소 분석을 제대로 다루지 못해서 구글을 통해서 검색을 했다. 그리고 제목보다는 서브키워드가 중요하다고 생각하여서, 제목은 잠시 파일에 저장하고 시간이 지나면 삭제하는 식의 과정을 진행했다.

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import requests
from bs4 import BeautifulSoup
 
sub_key = {}
 
for i in sum_search :
      
    with open(f'C:/Workspace/project2_final/output/temp/{i}-count.txt','r', encoding = 'utf-8'as file :
        data = str(file.readlines()[1])
 
    split_string = data.split(' ',1
    substring = split_string[0]           #빈도수 제거 
    #print(substring)
    
    sub_key[i] = substring
    
    
print(sub_key)
cs

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#네이버 검색, 키워드 서브키워드 
import requests
from bs4 import BeautifulSoup
 
art_lists = []
 
def search(key, b) :
    
    art_list = [b]
    
    #url = f'https://search.naver.com/search.naver?where=nexearch&sm=top_hty&fbm=1&ie=utf8&query={key}'
    url = f'https://search.naver.com/search.naver?where=news&sm=tab_jum&query={key}'
    html = requests.get(url).text
    soup = BeautifulSoup(html, 'lxml')
    
    for i in range(2) :
        news = soup.select('div.info_group > a:nth-of-type(2)')[i].attrs["href"]
        art_list.append(news)
    
    art_lists.append(art_list)
    
= sorted(sum_search.items(), key=lambda x:x[1], reverse = True#value 값 기준으로 정렬, 상위 5개 키워드
 
 
for i in range(5) :
    b= a[i][0]     #정렬 후 dic -> list 함수로 변환돼서 [i][0]으로 빼옴 
    #print(b)
    
    with open(f'C:/Workspace/project2_final/output/temp/{b}-count.txt','r', encoding = 'utf-8'as file :
        data = str(file.readlines()[1])
 
    split_string = data.split(' ',1
    substring = split_string[0]           #빈도수 제거 
    #print(substring)
    
    key = b + " " + substring
    search(key, b)
    
print(art_lists)
print(sum_search.items())
 
cs

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

두번째 프로젝트 순서

1. 프로젝트 주제 정하기

2. 기획 및 데이터 수집, 전처리

3. 데이터 저장(판다스 열/행 관련 정리)

4. 시각화 및 자동화

 


 

 

주제 : 하루 동안 있었던 이슈와 볼거리 정리

일정 : 4/29~5/7 (거의 5월 프로젝트인데 이제서야 정리를 하네요...)

기획 : 가십거리와 함께 전문적인 의견들에 대해서 하루를 정리하는 시간에 받아 보는 서비스

 

 

 

출처 : 조선일보

[네이버 실시간 검색어 폐지]

네이버 실시간 검색어도 갑자기 폐지됐다. 실검에 자꾸 광고성 키워드들이 올라와서 실검을 폐지했다는데 황당하다. 상품 키워드들만 올라가는 창을 만들든 트래픽을 분석해서 억제를 시키면 되는데, 소비자들의 편의성을 없앴다. 솔직히 실검보려고 네이버를 사용하는 사람들이 많았을텐데 얼마나 영향을 끼쳤을지 궁금하다.

 

(네이버는 이전에도 홈 화면을 뉴스나 실검이 나오는 창이 아닌 구글을 따라하듯이 바꿨는데, 이 막대한 손해는 어떻게 극복했는지도 궁금하다. 네이버 블로그도 바이럴 마케팅에 먹힌지 너무 오래 됐고, 인플루언서도 팔로워를 돈으로 사는 마당에 신뢰도를 어떻게 회복할지도 궁금한데.. 이건 뭐 뻘소리라서 패스..)

 

 

 

 

[이슈 생성 과정]

있다가 없어지면 불편하기 마련, 그래서 사람들이 어떤 것에 관심을 가지고 있고,

어떤 사건이 일어나는지 이슈의 생성 과정을 분석해보았다.

 

1. SNS 또는 커뮤니티에서 먼저 사건이 커진다. 

2. 그것이 커뮤니티로 돌고 돌아 공유가 돼서 커뮤니티에 상주하는 기자들이 기사를 쓰기 시작한다.

 (기사가 화제가 되는 경우도 있다.)

3. 기사를 본 사람들이 관련 내용이 어떤지 궁금해서 찾아보게 된다.

4. 실시간 검색어 순위에 오르게 되고, 기사나 관련 내용을 모르는 사람들은 실검을 클릭하게 된다.

 

=> 이러한 점을 미루어 봤을 때 커뮤니티에서 어떤 것이 이슈가 되고 있는지 파악해서 이슈를 예측해본다.

 

 

 

파이썬 업무 자동화를 배워서 이번에는 자동으로 시스템이 돌아가고, 자동으로 메일을 보내는 시스템을 구현하려고 한다. 원래는 Django를 통해서 웹 서비스를 구현해보려고 했는데, 생각보다 시간이 많이 걸려서 다음에 해보기로 했다.

 

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

- 첫 프로젝트 글 순서 -
1. 파이썬(python) EDA 데이터분석 주제 정하기
2. 실패한 여기어때 후기 웹스크래핑(web scraping)
3. 데이터 수집 방법 & 데이터 추출, 정제
4. 판다스(pandas) 데이터 처리 / Matplotlib, Json 시각화
5. 정리

지난 번에 글을 올린지 딱 2달이 지났다. 이후에 프로젝트를 벌써 3개를 더했는데... 틈만 나면 해야지 해야지 하는데 시간이 많이 나지를 않았다. 머신러닝, 인공지능 등 개념학습 따라가기도 너무 벅찼고, 모델은 아직까지 이해도 안 되는 수준이긴 하지만 더 늦어지면 안 될 것 같아서 미리미리 간단하게 쓰기로 했다.

솔직히 EDA 데이터 분석 팀프로젝트 5번째 항목 정리를 왜 했지라는 생각이 든다. 그래서 간단하게 어떻게 진행을 했고 어떤 것을 사용했는지, 결론은 어떻게 도출했는지만 간단하게 쓰려고 한다. 부지런하게 남은 프로젝트들도 업로드하면서 github도 사용해봐야 하는데 쉽지 않다. 개인적으로 마케팅 분석하고 sns까지 하다보니 시간이 남지 않는다. 해커톤까지 ???

나중에 알게 된건데 필수로 써야하는 부분이 몇개 있다.

1. 언어(파이썬, 자바, C 등..), 패키지(matplolib, pandas 등), 툴(주피터노트북, 코랩, 파이참 등..)
2. 일정표
3. 과정, 순서 등





이번에 주로 사용했던 것은 pandas, matplolib, json을 사용하였다. sns도 사용하려고 했는데 당시에는 생각보다 쉽지 않아서 matplotlib으로 데이터 시각화를 대부분 담당했다. 나중에도 시각화하는데 많이 사용하기 때문에 알아두는 것이 좋다.


과정, 순서 등은 어떤 부분에서 얼만큼의 시간을 썼는지 쓰면 좋을 것이다.


프로젝트를 할 때 주제가 많이 제한적이게 된 이유는 데이터를 구하기 너무 어렵다. 예전에 데이터가 곧 권력이고 힘이라고 했던 부분, 그리고 스프링쿨러? 온도, 습도 등의 데이터를 모아놨던 회사가 구글에 데이터를 고가에 팔았다는 것, 머신러닝을 하면서 더 느끼게 됐다.


데이터를 토대로 결론 도출을 해봤다
- 창업시 고려해야할 위치와 업종을 데이터를 통해 파악하기 쉽다.
- 업종에서는 소매업이 가장 많고, 그 다음이 음식점, 그리고 도민의 소매업이 평상시에도 많다.
- 성수기 때 슈퍼마켓, 체인화 편의점 이용률이 많이 늘어났다. 숙박업을 할 경우 미리 물품 구매를 하면 더 좋을 것이다.

=> 하고 싶은 업종을 입력했을 때, 위치, 경쟁, 타겟층을 보여주는 프로그램을 보여줘도 나쁘지 않을 것 같다.

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

- 첫 프로젝트 글 순서 -

 

1. 파이썬(python) EDA 데이터분석 주제 정하기 

2. 실패한 여기어때 후기 웹스크래핑(web scraping)

3. 데이터 수집 방법 & 데이터 추출, 정제

4. 판다스(pandas) 데이터 처리 / Matplotlib, Json 시각화

5. 정리


데이터를 어떤 식으로 그룹핑을 할지 고민을 하다가 cost(비용)으로 하기로 했다. 

 

-큰 틀에서 묶기-

 

제주시/서귀포시 매출 비교

업종별 매출

성별/연령별 소비

개별/단체 소비

성수기/비수기

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# 월별 / 남성 / 나이/ 종류 별 금액
sum_stores =  df.groupby(['date','sex','age','stores'])['cost'].sum()
print(sum_stores.plot(kind='bar', rot=90) )
 
#성수기 비수기
sum_sb = df.groupby('date')['cost'].sum()
 
 
#업종별 매출 
sum_stores = df.groupby('stores')['cost'].sum()
 
 
#성별, 연령별 소비 순위
sum_sa = df.groupby(['sex','age'])['cost'].sum()
sum_sa
 
#성별 업종 이용현황, 연령별 업종 이용현황, 성별&연령별 업종 이용현황
sum_st = df.groupby(['sex','stores'])['cost'].sum()
sum_at = df.groupby(['age','stores'])['cost'].sum()
sum_sat = df.groupby(['sex','age','stores'])['cost'].sum()
 
#제주시 서귀포시 소비 비교 / 읍면동별 소비 비교
sum_city = df.groupby(['city'])['cost'].sum()
sum_city2 = df.groupby(['city2'])['cost'].sum()
 
#제주시 서귀포시 업종별 소비 비교 / 읍면동 업종별 소비 비교
sum_ct = df.groupby(['city','stores'])['cost'].sum()
sum_ct2 = df.groupby(['city2','stores'])['cost'].sum()
 
#지역 각 성별 업종 이용률
sum_cst2 = df.groupby(['city2','sex','stores'])['cost'].sum()
 
#개별과 단체 총금액 비교
sum_visitor = df.groupby(['visitor'])['cost'].sum()
 
#개별 단체 성별 총금액 비교 / 개별 단체 업종별 총금액 비교 / 단체 or 개별에서 이용자별 금액비교
sum_vs = df.groupby(['visitor, sex'])['cost'].sum()
sum_vt = df.groupby(['visitor, stores'])['cost'].sum()
sum_vu = df.groupby(['visitor, user'])['cost'].sum()
 
#개별(내국인, 법인, 외국인) / 단체에서 이용하는 업종
sum_vut = df.groupby(['visitor, user, stores'])['cost'].sum()
cs

우선 데이터가 어떻게 보여지는지 기본적인 시각화를 진행했다. 만약 세부정보가 필요하면, 세분화해서 EDA데이터 분석하는데 유용하게 활용했다.

 

 

1
2
3
4
5
6
#특정 업종, 날짜
sum_sdt = df[(df.stores == '소매업')  & (df.date == 'Feb-17')].groupby('type')['cost'].sum()
 
#특정 연령, 
sum_ast = df[df.age==10].groupby(['sex','type'])['cost'].sum().sort_values().tail(20)
 
cs

열에서 특정 연령, 성별, 업종만 뽑아내서 더하고 싶으면, df[df.열 == '열 속성'].groupby를 이용해주면 된다. 특정 열에서 속성을 추출해서 더하는 코드가 나오지 않아서 참고하면 좋을 것 같다.

 

 

 

1
2
3
4
5
plt.rc('font',family='Malgun Gothic')
plt.figure(figsize=[20,10])
plt.style.use('ggplot')
sum_sa = df.groupby(['sex','age'])['cost'].sum()
sum_sa.plot(kind='bar'
cs

matplotlib 함수를 활용하여 가장 기본적인 시각화를 했다. 

 

 


 

얘네를 모아서 EDA 데이터 분석에 필요한 자료만 모으고, title, x축, y축, 그래프 색, 그래프 종류(box, bar, barh, violinplot, pie) 등으로 다시 시각화 과정을 진행했다.

 

 

 

1
2
3
4
5
6
7
8
9
10
plt.figure(figsize=[10,5])
title_font = {'fontsize'16'fontweight''bold'}
plt.title('도민 소매업 매출 순위', fontdict = title_font, loc = 'center', pad =20)
sum = df[(df.stores=='소매업'& (df.visitor=='도민')].groupby('type')['cost'].sum()
ax = plt.subplot()
ax.set_xticklabels(['0','500억''1000억''1500억''2000억''2500억''800억'])
sum.plot(kind = 'barh', color = '#f39189')
plt.xlabel('Total Amount')
plt.ylabel('Type of Business')
sum_sa
cs

barh 막대 그래프

 

 

 

1
2
3
4
5
6
explode = [ 0.10.1,0.10.1,0.1,0,0 ]
title_font = {'fontsize'16'fontweight''bold'}
plt.title('업종별 매출', fontdict=title_font, loc='center', pad= 20)
sum_sa = df.groupby('stores')['cost'].sum().sort_values()
sum_sa.plot(kind='pie',y='sum', autopct = '%1.1f%%',explode=explode, startangle=0)
 
cs

 

pie 그래프

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import pandas as pd
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
import folium
from folium import plugins
from folium.plugins import MarkerCluster
import json
 
df1= pd.read_csv("jeju_card.csv",engine='python', encoding = 'euc-kr', header=0,
                names=['date','city''city2''type''user''visitor''age''sex''cost''stores'])
         # 카드 이용금액 csv
df2 = pd.read_csv("jeju_lalo.csv",engine='python', encoding = 'euc-kr')
#df2 = 제주도의 행정구역을 위도 및 경도로 나눈 csv
df3 = pd.read_csv("jeju_cost.csv",engine='python', encoding = 'euc-kr')
#df3 = 구역별 소비를 나타낸 csv
df = pd.DataFrame(df1)
 
lat = df2['위도'].mean()
long = df2['경도'].mean()
= folium.Map([lat,long], zoom_start=9)
# lay, long의 평균값으로 지도의 첫 화면 지정 / 줌lv = 9
= df.groupby(['city2'],  as_index = False)['cost'].sum()
# city2 컬럼을 그룹바이하고 그 중의 cost컬럼을 모두 sum.
# as_index = False : 그룹 바이 한 데이터 프레임에 index 번호를 추가해준다.
 
#---------------------------제이슨 표시---------------------------
#제주도의 행정구역을 시각화로 나눠주는 geojson road
with open("Jeju_json3.geojson", mode='rt',encoding='utf-8'as f:
    jeju_json = json.loads(f.read())
    f.close()
folium.GeoJson(jeju_json, name='jeju_haejoeng').add_to(m)
#------------------------------------------------------------------
 
#---------------------------제이슨 조건---------------------------
folium.Choropleth(geo_data = jeju_json,         # geo_data load
                  data = df3,                 # 위치를 표현해줄 데이터 load
                  columns = ('읍면동''이용금액'),     # ('지도에 표현할 컬럼', '비교할 컬럼')
                  key_on = 'feature.properties.adm_nm',     # geo_data load 후 데이터를 어디서 받을지
                  fill_color = 'YlGn',             # 비교해서 나타낼 색 / 노란색/초록색
                  fill_opacity = 0.8,             #
                  line_opacity = 0.5,             #
                  legend_name = '지역별 매출액'         # 우측 상단에 나오는 bar 이름
                  ).add_to(m)
#------------------------------------------------------------------
 
marker_cluster = MarkerCluster().add_to(m)         # 마커 클러스터 추가 (현재 코드엔 사용 안함.)
for i in range(len(a.index)):
    b = df2[df2['읍면동'== a.iloc[i,0]]         # df2 읍면동 컬럼에서 a의 [i,0] 값과 같은것을 추출
    sub_lat = b.iloc[0,4]                 
    sub_long = b.iloc[0,5]                 # 위, 경도 설정
    title = b.iloc[0,2]                 # title 설정
 
    folium.Marker([sub_lat,sub_long],tooltip = title).add_to(m) 
    # 마커 설정 마커클러스터를 실행시키려면 add_to(marker_cluster)
 
#folium.LayerControl(collapsed=False).add_to(m)     # 그룹화된 기능들을 사용하기위해 컨트롤러 설정
m.save('jeju.folium.html')
 
 
cs

제주도 marker

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import pandas as pd
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
import folium
from folium import plugins
from folium.plugins import MarkerCluster
import json
 
# json 도시별 행정구역 구분 sggnm
df1= pd.read_csv(r"C:\Users\rhdud\Desktop\py_team\read_file\123123.csv",engine='python', encoding = 'euc-kr', header=0,
                names=['date','city''city2''type''user''visitor''age''sex''cost''stores'])
df2 = pd.read_csv(r"C:\Users\rhdud\Desktop\py_team\read_file\jeju_lalo.csv",engine='python', encoding = 'euc-kr')
#df2 = 제주도 행정구역 위도 및 경도로 나눈 csv
df3 = pd.read_csv(r"C:\Users\rhdud\Desktop\py_team\read_file\jeju_cost.csv",engine='python', encoding = 'euc-kr')
df = pd.DataFrame(df1)
 
 
lat = df2['위도'].mean()
long = df2['경도'].mean()
= folium.Map([lat,long],zoom_start=9)
# lay, long의 평균값으로 지도의 첫 화면 지정 / 줌lv = 9
= df.groupby(['city2','sex','stores'],  as_index = False)['cost'].sum()
'''
#---------------------------폴리움 그룹화---------------------------
fg = folium.FeatureGroup(name = '도시별 표현')
m.add_child(fg)
g1 = plugins.FeatureGroupSubGroup(fg, '제주시')
m.add_child(g1)
g2 = plugins.FeatureGroupSubGroup(fg, '서귀포시')
m.add_child(g2)
g3 = plugins.FeatureGroupSubGroup(fg, 'Json으로 표현')
m.add_child(g3)
#------------------------------------------------------------------
'''
#---------------------------제이슨 표시---------------------------
with open(r"C:\Users\rhdud\Desktop\py_team\read_file\Jeju_json.geojson", mode='rt',encoding='utf-8'as f:
    jeju_json = json.loads(f.read())
    f.close()
folium.GeoJson(jeju_json, name='jeju_haejoeng').add_to(m)
#------------------------------------------------------------------
 
#---------------------------제이슨 조건---------------------------
key_by = 'feature.properties.adm_nm'
folium.Choropleth(geo_data = jeju_json,
                  data = df3,
                  columns = ['읍면동''이용금액'],
                  key_on = key_by[key_by.rfind(' ')+1 :],
                  fill_color='YlGn',
                  fill_opacity=0.8
                  ).add_to(m)
#------------------------------------------------------------------
 
m.save('jeju_data1.html')
cs

제주도 choropleth

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

- 첫 프로젝트 글 순서 -

1. 파이썬(python) EDA 데이터분석 주제 정하기 

2. 실패한 여기어때 후기 웹스크래핑(web scraping)

3. 데이터 수집 방법 & 데이터 추출, 정제

4. 판다스(pandas) 데이터 처리 / Matplotlib, Json 시각화

5. 정리

 


사진 클릭시 사이트로 이동합니다

 

 

캐글

Kaggle에서는 데이터 과학 작업에 필요한 모든 코드와 데이터를 찾을 수 있다. 50,000 개 이상의 공개 데이터 세트 와 400,000 개의 공개 노트북을 사용하여 분석이 가능하다고 나온다.

 

장점 : 고급 데이터가 많다.

단점 : 정의가 약간 불분명하다. 정확한 출처 비공개

 

 

 

 

 

서울 열린 데이터 광장 

 

열린데이터광장에서 서울시와 연계 기관이 공개한 공공데이터를 확인할 수 있다. 

SHEET (6326) / OpenAPI (5139) / CHART  (1320) / FILE (595) / LINK (164)

 

 

 

 

공공데이터 포털 

 

공공기관이 만들어내는 모든 자료나 정보, 국민 모두의 소통과 협력을 이끌어내는 공적인 정보를 모아놨다.

5만 6천여건의 자료를 확인할 수 있다.

 

API 자료, 웹 스크래핑 등 다양한 방법을 사용하려고 했으나 처음 프로젝트라서.. 간단하게 엑셀 파일을 사용했다.

 

 

 

 

제주도 데이터허브

 

제주도 관련 자료를 찾다가 유용한 자료들이 많아서 여기서 카드 매출 자료를 활용했다.

 

 

1
2
3
4
5
6
7
8
9
10
11
12
import numpy as np
import pandas as pd
from pandas import Series, DataFrame
import matplotlib.pyplot as plt
import seaborn as sns
 
 
df1= pd.read_csv("jeju_card.csv",engine='python', encoding = 'euc-kr', header=0,
                names=['date','city''city2''type''user''visitor''age''sex''cost''stores'])
 
df = pd.DataFrame(df1)
 
cs

만약 한글이 깨지면 encoding에 'utf-8' 또는 'euc-kr'으로 설정을 하면 깨지지 않고 잘 나온다. 함수 사용할때 편리하게 하기 위해서 열을 재정의 했다.

 

 

1
2
3
4
5
df.info()
df.head()
df.shape
df.index
df.columns
df['업종명'].unique()
cs

데이터 정제를 위해서 데이터가 어떻게 구성이 됐는지 확인해야 한다.  결측치(NaN값), 중복값 등을 조정해야 한다.

 

df.replace(to_replace = np.nan, value = ?)

df.fillna(0)

 

로 데이터를 수정하려고 했으나, 개인 / 단체 / 성별 / 연령이 복잡하게 엉켜있어서 따로 수정하지 않았다. (오차가 크지 않아서 뺌)

 

컬럼과 타입 확인

 

 

 

데이터 어떻게 보여지는지 확인

 

 

 

97만개의 데이터와 10개의 컬럼

 

 

 

컬럼이 어떤지 확인 

 

 

 

컬럼이 어떻게 구성이 됐는지 확인

 

택시 운송업/버스 운송업이 미분류로 되어 있고, 내항 여객 항공업/정기 항공 항공업 등이 오히려 운송업으로 되어 있어서 데이터를 수정해서 EDA 분석

 

 

 

 

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

- 첫 프로젝트 글 순서 -

1. 파이썬(python) EDA 데이터분석 주제 정하기 

2. 실패한 여기어때 후기 웹스크래핑(web scraping)

3. 데이터 수집 방법 & 데이터 추출, 정제

4. 판다스(pandas) 데이터 처리 / Matplotlib, Json 시각화

5. 정리




웹스크래핑 vs 웹크롤링 

 

웹스크래핑 : 분석을 위해서 특정 데이트를 추출해서 자신이 원하는 형태로 가공한다.

웹크롤링 : 웹사이트의 데이터를 수집하는 모든 작업, 일종의 로봇이라고 생각하면 된다.

 

 

 

 

출처 : 위키백과

파이썬 EDA 데이터분석 프로젝트 과정

 

목표 : 소비자가 원하는 서비스 파악하기

위치 : 제주도 제주시

업태 : 게스트하우스

수집항목 : 이름, 위치, 가격, 평점, 후기, 기본정보

웹스크레이핑 방법 : 3~5개 숙박 업체 제주도 검색 -> 인기순 -> 100개대략적 위치, 후기 내용 추출 -> 숙소의 위치를 표시하고, 숙박업 어떤 것이 서비스가 필요한지 키워드 10~50위 순위 보여주기 (제외할 키워드 생각)

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import requests
from bs4 import BeautifulSoup 
import re
 
data = requests.get('https://www.goodchoice.kr/product/result?sort=ACCURACY&keyword=%EC%A0%9C%EC%A3%BC%EC%8B%9C&type=&sel_date=2021-04-08&sel_date2=2021-04-09&adcno%5B%5D=6&min_price=&max_price=')
name_list =[] #업소명
rate_list=[] #평점
price_list=[] #가격
 
html = data.text
soup = BeautifulSoup(html, 'html.parser')
n_list = soup.select('div.name  strong')
r_list = soup.select('p.score em')
p_list = soup.select('div.map_html b')
 
for i in n_list:
    name = i.string
    name_list.append((name).lstrip().replace("\t","").replace("\n","")) #탭이랑 줄바꿈 
    
for i in r_list:
    rate = i.string
    rate_list.append(rate)
    
for i in p_list:
    price = i.string
    price_list.append(price)
 
#print(rank_list)
#print(music_title)
#print(music_artist)
 
for i  in range(len(name_list)) :
    print('업소명:' , name_list[i])
    print('평점:' , rate_list[i])
    print('가격:' , price_list[i])
    print('-------------------------------')
 
cs

여기어때 사이트에 들어갔는데 데이터가 너무 방대해서, 제주시와 게스트하우스로 한정을 지었다. 우선 후기가 따로 들어가 있어서 일단 업소명, 평점, 가격을 추출하고 그 다음에 후기를 하나씩 추출하는 방식으로 진행을 하려고 했다.

 

 

BeautifulSoup : HTML과 XML 파일로부터 데이터를 가져오기 위한 라이브러리

find : html tag를 통한 크롤링

select : css를 통한 크롤링

find, select_one : 첫 번째 태그를 찾음

find_all, select : 모든 태그를 찾음

 

find보다 select가 '>'로 하위 태그로 접근이 쉬워서 여기어때 사이트에서 F12를 누르고 Ctrl + Shift + C 를 눌러서 element를 찾아서 업소명, 평점, 가격 별로 추출을 했다. 

 

 

 

 

제목 스크래핑하기 제목을 커서위에 대보니까, div class name > strong에 포함되어 있는 것을 확인할 수 있다. 하지만 출력을 해보면 줄바꿈과 탭으로 인해서 깔끔해보이지 않아서 replace()를 한 것이다. 중간중간 어떻게 출력이 되는지 print(n_list)를 각각 해보는 것을 추천한다.

 

 

 

 

 

결과를 확인해보니까 잘 출력되고 있다. 일정 부분까지 가고 스크롤이 내려가지 않아서 마지막에 에러가 뜨는 것으로 보인다. 

 

 

 

한계 1

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from time import sleep
from bs4 import BeautifulSoup as bs
from selenium import webdriver
from selenium.webdriver.common.keys import Keys #텍스트 외에 특수 키를 입력하기 위한 모듈
 
driver = webdriver.Chrome('chromedriver.exe')
url = "https://www.goodchoice.kr/"
driver.implicitly_wait(5)
driver.get(url)
 
search = driver.find_element_by_xpath('/html/body/div[1]/header/section/button[2]')
search.click()
#search.clear()
search = driver.find_element_by_xpath('//*[@id="keyword"]')
driver.implicitly_wait(5)
search.send_keys("제주시")
search.send_keys(Keys.ENTER)
#driver.implicitly_wait(5)
driver.set_window_size(1400,1000)
search = driver.find_element_by_xpath('//*[@id="content"]/div[1]/section[2]/ul/li[6]/label')
search.click()
search = driver.find_element_by_xpath('//*[@id="content"]/div[1]/div[2]/button[2]')
search.click()
cs

 

여기어때 싸이트에 들어감 -> 검색 창을 한 번 누르고, 한 번 더 눌러야함을 알 수 있음 -> 제주시를 입력하고, 엔터를 눌러서 검색 -> (gif에는 안 나오지만) 밑에 게스트하우스 클릭박스를 선택 후, 적용 클릭

 

우선 여기까지 구현을 하고 나서 게스트하우스를 하나씩 클릭하고 돌아오고는 할 수 있는데, 배운 선에서 웹 스크래핑으로 열린 창에 새로운 url 주소를 얻는 방법을 몰라서 벽에 부딪혔다 ㅠㅠㅠ

 

이건 나중에 개발자 친구한테 알아내서 추가하겠습니다.

 

 

 

한계 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from wordcloud import WordCloud
from konlpy.tag import Twitter
from collections import Counter
 
# open으로 txt파일을 열고 read()를 이용하여 읽는다.
text = open('news.txt', encoding='utf-8').read() 
twitter = Twitter()
 
# twitter함수를 통해 읽어들인 내용의 형태소를 분석한다.
sentences_tag = []
sentences_tag = twitter.pos(text) 
noun_adj_list = []
 
# tag가 명사이거나 형용사인 단어들만 noun_adj_list에 넣어준다.
for word, tag in sentences_tag:
    if tag in ['Noun' , 'Adjective']: 
        noun_adj_list.append(word)
 
# 가장 많이 나온 단어부터 40개를 저장한다.
counts = Counter(noun_adj_list)
tags = counts.most_common(40
 
 
# WordCloud를 생성한다.
# 한글을 분석하기위해 font를 한글로 지정해주어야 된다. macOS는 .otf , window는 .ttf 파일의 위치를
# 지정해준다. (ex. '/Font/GodoM.otf')
wc = WordCloud(font_path='c:\Window\Fonts\malgun.ttf' ,background_color="white", max_font_size=60)
cloud = wc.generate_from_frequencies(dict(tags))
 
import matplotlib.pyplot as plt
plt.figure(figsize=(108))
plt.axis('off')
plt.imshow(cloud)
# plt.to_file('test.jpg') test.jpg 파일로 저장
plt.show()
cs

수업시간에 잠깐 배웠던 내용을 가지고 후기에 어떤 키워드가 많이 사용되는지 확인하려고 했다. wordcloud를 생성해서 후기를 모으고 상위 단어 top50 개를 추리려고 했다. 하지만 웹 스크래핑도 안 될뿐만 아니라, 예외 단어들을 어떻게 정할지 하나하나 생각해야 했다. 사람들이 쓰는 방법들이 다 달라서 좋다, 좋았어요, 좋구만, 좋아요 다 다르게 인식하면 어쩌나하고 강사님과 상의 후에 다른 방식으로 진행하기로 했다.

 

 

 

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

파이썬 EDA 데이터분석 팀 프로젝트, 마케팅 관점에서 생각하기 (제주도)

 

- 첫 프로젝트 글 순서 -

1. 파이썬(python) EDA 데이터분석 주제 정하기 

2. 실패한 여기어때 후기 웹스크래핑(web scraping)

3. 데이터 수집 방법 & 데이터 추출, 정제

4. 판다스(pandas) 데이터 처리 / Matplotlib, Json 시각화

5. 정리

 

 

3월 중순에 교육을 시작해서 단 몇 주만에 파이썬을 배웠다. 6개월 뒤에 이 글을 다시 보게 되면 참 답답하게 코딩을 했구나라고 생각을 했으면 좋겠다는 심정으로.. 열심히 코딩을 할 생각이다.

 

* 코딩 부분은 다음 편부터 나옵니다. 일련의 과정이니 참고만 해주세요


EDA 란?

 

데이터를 수집하고 수집된 데이터를 다양한 각도에서 관찰하고 이해하는 과정으로 보면 된다. 데이터를 분석하기 전에 그래프나 통계적인(matplotlip, seaborn) 방법으로 시각화해, 더욱 직관적으로 데이터를 처리해서 분석한다.

 

 

 

출처 : blog.naver.com/hrd04/221135900560

 

이렇게 복잡한 과정을 거쳐야할 수도 있지만... 간단하게 보면

데이터 수집 => 시각화 탐색 => 패턴 도출 => 인사이트 발견 순으로 보면 좀 할만하네?라고 생각이 든다. 

 

 

 

 

주제 선정

 

모르면 일단 친구한테 물어보는게 마음 편하다. 생각보다 간단한 주제를 해서 별거 아닐거라고 생각했는데 큰 오산...

 

 

 

 

[마케팅적인 관점으로 접근] 

1. 검색수, 관심, 날씨 등의 키워드 분석으로 6개월 후에 팔릴 제품 예상

- 날씨는 기상청 공공데이터, 검색 수는 구글 트렌드, 네이버 datalab으로 어느 정도 데이터를 뽑을 수 있지만, 개인의 관심과 개인이 구매했던 제품들을 보려면 개인 정보가 필요한데 데이터를 구하기 힘들 것으로 판단해서 포기

 

 

 

 

 

 

2. 드라마에 나오는 제품(협찬)이 실제 검색량과 구매에 얼마나 영향을 미치는지

- 커뮤니티에 홍보글들이 올라와서, 조회수 당 실질적으로 구매에 얼마나 많은 영향을 미칠까.. 인플루언서 마케팅의 효율이 얼마나 될지를 객관적인 데이터 자료로 생각을 하려고 했지만, 이것 또한 구매까지 파악이 안 돼서 pass 

 

3. 네이버 view 상위 검색 분석 

- 네이버에도 알고리즘이 있다고 하지만 어느정도 상관관계가 있을 수 있으니 for 구문으로 지역별 + 맛집 돌려서 상위 5~10개의 글에서 키워드, 그림 개수, 영상 길이, 블로그 전체 글 수 등을 웹 스크래핑으로 통계를 내서 진행하려고 했으나... 말로는 쉽지 실제 하기는 어려웠다.

 

 

 

[팀 회의]

- 지역별, 성별, 연령 등으로 정리 할 수 있는 코로나 감염자 현황

- 서울 지하철 역 별로 승/하차 인원 및 현재 열차의 위치

- 서귀포시 와 제주시로 나누어 토지 비교 / 상업용 비교

- 연도별 토지값 변동, 각 동별로 차이가 있는가

- 동일 생활권내 각동별로 같은가

 

 

 

[EDA 과정]

간단한 주제 밖에 나오지 않아서 '제주도 예비 창업자를 위한 업종 서비스 추천'이라는 EDA 팀 프로젝트 주제를 정했다 => 데이터를 찾아보니 너무 주제가 광범위해서, 숙박업으로 좁혔다(숙박업 서비스 개선을 위한 방안) => 그래도 데이터가 많은 것 같아서 에어비앤비, 야놀자, 여기어때 등의 숙박업체 중 탑 2 (야놀자, 여기어때 점유율이 1, 2위라는 걸 처음 알았음)에서도 제주시, 게스트하우스로 줄여나갔다.

 

* 머릿속 생각은 숙박업체 등에서 좋은 평점, 또는 많이 방문하는 업체들의 리스트를 뽑는다. 어떤 점에서 방문을 하는지 주위 상권 분석을 한다. 추가로 있으면 좋을 서비스나 경쟁력 갖추기 위한 것들을 제시한다. 제주도뿐만 아니라 타 여행도시랑 비교해본다. 

 

 

오만했다. 처음 프로젝트면 욕심을 버리자

 

 

다음 편은 후기를 웹 스크래핑으로 뽑아오기 

+ Recent posts