336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

목차

1. SKT-AI/KoGPT2와 자연처(NLP)

2. 데이터 전처리 (나무위키, 블로그)

3. KoGPT2와 기능구현 (인풋 아웃풋 조정)

4. 짧은 텍스트 / 문장유사도

5. 배포 (구글 애즈, GA, AWS)

 


 

[네이버 어벤저스] 내가 보는 상품 홍보문구, 실은 AI가 썼다고?

국민 포털로 출발한 네이버가 다양한 플랫폼과 서비스들로 영역을 대폭 확장하고 있다. 이용자 경험을 위한 체질 개선뿐만 아니라, 중소상공인(SME) 및 창작자들과 이용자들을 연결해 디지털 비

n.news.naver.com

[네이버 어벤저스] 내가 보는 상품 홍보문구, 실은 AI가 썼다고?

뭔가 우리 팀에서 진행했던 파이널프로젝트 결과가 나오고 나서 부랴부랴 기사를 낸 것 같은 착각이 들어서 뿌듯했다. 기업에서도 이런 생각을 하고 있었고, 우리가 이걸 해냈구나? 하는 느낌.. 빨리 파이널 프로젝트 글을 쓰고 나서 다른 글도 올려야 하는데, 추가로 gpt3와 자연어 공부를 같이 하고 있어서 글 쓰는 시간도 부족한 것 같다. 그리고 정리를 해놨던 파일이 갑자기 증발이 되는 바람에 목차도 많이 줄였다.

 

우리가 필요한 데이터는 기업 설명(단순 기업명 가지고는 안 됐다)과 슬로건, 광고 문구였다. 하지만 온라인 상에는 그러한 데이터셋이 존재하지 않았다. 슬로건, 광고문구 데이터를 어떻게 모았는가 하면, 블로그에서 기업명과 함께 크롤링을 하고, 기업명을 네이버, 나무위키, 사람인 등에 다시 검색해서 기업의 정보를 모았다. 사람인에서 기업 설명이 깔끔하게 입력이 됐으면 이를 사용했을텐데 이상하게 분류된게 많아서 결국 손으로 데이터 전처리를 진행했다.

 

(* 잡담 : 도전하자. 프로젝트에 올라온 글들의 제목이 매력이 없어 보인다. 추후에 구글에서 검색이 되면서 사람들이 클릭하게끔 또 만들어야할 듯 싶다)

 

 

 

 

출처 : python awesome

어떻게 프로젝트를 진행했는지 다시 생각해보니, 다양한 시도를 하긴 했구나 하는 느낌? style gan을 사용해서 로고생성까지 시도하려고 했으나 생각보다 결과가 좋지 않고 비효율적이었다. 그래서 새로운 캐릭터를 생성하자는 느낌으로 해볼까 했는데, 캐릭터를 크롤링하고 찾는 것도 일일 것 같아서 우선 할 수 있는 부분에 더욱 중점을 뒀다.

 

 

 

 

출처 : 금강일보

네이버 블로그 크롤링의 문제점

1. 우선 java script로 구성이 돼서 동적 크롤링을 사용해야 한다. 2. iframe으로 둘러 쌓여서 크롤링이 쉽지 않았다그리고 스마트 에디터 one과 2.0 버전에 따라 크롤링 해야하는 방법이 다르다.

 

동적 크롤링인 셀레니움이 속도도 느리고 중간중간 빠지는 데이터들도 있어서 사용하는 것을 별로 안 좋아해서 어떻게 하면 beautiful soup으로 할까 하다가.. 네이버 블로그 검색창에 제목을 검색해서 하니까 잘 진행이 됐다. link가 포함된 부분을 크롤링하고 get('href')로 링크만 크롤링을 했다.

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
# 네이버 블로그 iframe 제거 함수
def delete_iframe(url):
    headers = {
        "User-Agent""Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36"}
   req = requests.get(url, headers=headers)
   req.raise_for_status()  # 문제시 프로그램 종료
    soup = BeautifulSoup(res.text, "lxml")
 
    src_url = "https://blog.naver.com/" + soup.iframe["src"]  # iframe 안에 있는 src 부분을 가져옴
 
    return src_url
 
cs

출처 : https://github.com/tiger-beom/naverblog_scraping

 

iframe 제거 함수를 미리 정의해놓으면 나중에 네이버 블로그 크롤링하는데 편리할 것이다. 2.0 -> 3.0 -> one 다 써봤었는데 2.0보다는 one이 더 깔끔하긴 하지만.. 정말 초반에는 오류 투성이었다. 글을 써야 하는데 평상시보다 몇 배가 더 걸렸던 기억이 있다. 투데이 2만이 넘었던 블로그였는데 ..

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# 네이버 블로그 글 크롤링 함수
def text_scraping(url):
    headers = {
        "User-Agent""Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/90.0.4430.93 Safari/537.36"}
    req = requests.get(url, headers=headers)
    req.raise_for_status()  # 문제시 프로그램 종료
    soup = BeautifulSoup(res.text, "lxml")
 
    if soup.select_one('div.se-main-container'):
        text = soup.select_one('div.se-main-container').text
        text = text.replace('\n''')
        # print("블로그")
        return text
    elif soup.select_one('div#postViewArea'):
        text = soup.select_one('div#postViewArea').text
        text = text.replace('\n''')
        # print('블로그 2.0')
        return text
    else:
        return "오류"
cs

div.se-main-container가 포함되면 스마트에디터-one, div#postViewArea가 포함이 되면 2.0 버전이라고 생각하면 된다. 네이버 포스트의 경우 또 다른 방식으로 글을 크롤링해야 한다. 궁금하면 위의 깃허브로 들어가시면 됩니다.

 

 

 

 

나무위키 크롤링 문제점

동적, 정적 크롤링이 모두 안 됐다! 왜 그런가 찾아보니 나무위키에서 크롤링 하는 것을 원천 차단한 모양이다. 트래픽 과부하를 막기 위해서 그런 것으로 보인다. 그래서 봇으로 인식을 하면 아예 창이 들어가지지 않았다. 

 

우선 코드를 짜봤는데 진행이 되지 않았고, 내 문제인가 싶어서 위키독스에 나와있던 코드를  따라했는데도 되지 않았다. 결국 구글링을 열심히 해서 봇이 아닌 사람으로 인식하는 코드를 추가로 넣어줘야 했다

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
#봇이 아닌 사람으로 인식하는 코드 / 자신의 크롬 위치 입력
subprocess.Popen(r'C:\Program Files (x86)\Google\Chrome\Application\chrome.exe --remote-debugging-port=9222 --user-data-dir="C:\chrometemp"')
 
options = webdriver.ChromeOptions()
options.add_experimental_option("debuggerAddress""127.0.0.1:9222")
 
chrome_ver = chromedriver_autoinstaller.get_chrome_version().split('.')[0]
try:
    driver = webdriver.Chrome(f'./{chrome_ver}/chromedriver.exe', options=options)
except:
    chromedriver_autoinstaller.install(True)
    driver = webdriver.Chrome(f'./{chrome_ver}/chromedriver.exe', options=options)
 
driver.implicitly_wait(3)
start = time.time()
cs

첫번째 줄에 있는 코드는 컴퓨터마다 크롬 위치가 다를 수 있기 때문에 확인해야 한다. 그리고 나서 크롬드라이버를 아예 새로 설치하는 것 같았다. import chromedriver_autoinstaller 를 통해서 패키지를 추가하자.

 

이렇게 코드를 입력하면 이제 본격적으로 셀레니움을 통해서 검색을 하면 된다고 생각했지만... 또 문제가 있었다. 어떤 정보를 긁어와야 하는지? 동음이의어가 존재할 때 어떻게 처리를 할지? 그리고 기업명이 단순히 기업명만 있으면 좋겠지만, 슬로건이나 광고문구를 가져오다 보니 지역명이나, 캠페인도 포함이 돼서 이를 먼저 처리해야했다. 그리고 no_search 리스트를 만들어서 제외했다.

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
            same = driver.find_element_by_xpath('//*[@id="app"]/div/div[2]/article/div[3]/div[1]/ul/li/a').text
 
            #동음이의어가 존재할 경우 원하는 정보를 긁어오지 않음, 예외로 뺴기 (분류에 동음이의어/* 여부)
            if '동음이의어' in same:
                explane = 'same'
                explanes.append(explane)
 
            #아닐 경우 그대로 진행
            else :
               try:
                    explane = driver.find_element_by_css_selector('div.wiki-heading-content').text
                    explanes.append(explane)
                    #print(explane)
 
                except:
                    explane = 'NaN'
                    explanes.append(explane)
cs

간단하게 접근을 했다. 개요에서 회사에 대한 설명을 긁어오기 전에 우선 동음이의어가 검색이 되는지 파악을 하고, 검색이 되는 경우 크롤링을 진행하지 않았다. 그리고 사람인, 네이버 뉴스 검색에서 회사 설명을 찾았다. 예전에 기사를 써본적이 있는데, 처음에 회사나 제품, 서비스에 대한 설명을 간단하게 적어놓는다는 점을 착안했다.

 

이렇게 크롤링을 하면 되겠다 싶었는데... 결과를 비교하니 참담했다. 그래서 손크롤링을 진행했다고 한다. ㅠㅠㅠ

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

목차

1. SKT-AI/KoGPT2와 자연처(NLP)

2. 데이터 전처리 (나무위키, 블로그)

3. KoGPT2와 기능구현 (인풋 아웃풋 조정)

4. 짧은 텍스트 / 문장유사도

5. 배포 (구글 애즈, GA, AWS)

 

모바일로 보니 너무 불편해서 수정 좀 했습니다 ㅠㅠ


 

결과물부터 보자면, kogpt2를 사용해서 슬로건을 생성하였다. 웹으로 서비스를 배포(AWS)하고, 구글애즈로 노출을 시키면서, GA(구글애널리틱스)로 트래픽을 분석하여 더 개선시키는 방향으로 진행했다.

 

 

 

 

 

 

GPT3 사용법, 설치부터 쉽게! 슬로건, 동화 만들기까지? KoGPT3 등장?

6-1 파이널 프로젝트 : 자연어처리, kogpt2를 이용한 슬로건 생성 목차 1. SKT-AI/KoGPT2와 자연처(NLP) 2. 데이터 전처리 (나무위키, 블로그) 3. KoGPT2와 기능구현 (인풋 아웃풋 조정) 4. 짧은 텍스트 / 문장

0goodmorning.tistory.com

읽으면 유용한 글 : GPT3

 

 

 

 

 

패키지, 툴 등 사용 기술

기간 : 2021.07.12 ~ 2021.08.18 (1 달 조금 넘게)

사용 기술은 그림을 참고. 

 

파이널 프로젝트라서 거창한 것을 해보려고 다양한 아이디어를 냈으나 쉽게 주제를 결정할 수 없었다. 이것저것해보다가 시간은 4주도 남지 않아서 처음에 진행하려고 했던 슬로건 생성을 해보자고 했다. 과연 슬로건처럼 간단하면서 임팩트 있는 문구를 인공지능이 생성할 수 있을까? 하는 의문이 있었지만 인공지능은 해냈다. (우리가 해냈다)

 

이번 시간을 통해서 자연어처리에 대해서 많이 공부를 할 수 있었고, gpt2와 프로젝트가 끝난 이후 gpt3에 대해서도 추가적으로 공부를 하였다. 주로 인공지능을 통해서 분류를 하거나 예측을 하였는데, 새로운 문장을 생성한다는게 참 신기했다.

 

 

 

GPT(Generative Pre-trained Transformer)는 언어모델로 '자연어 디코더 모델'이라고 생각하면 쉽다. 자연어 처리 기반이 되는 조건부 확률 예측 도구이며, 단어가 주어졌을 때 다음에 등장한 단어의 확률을 예측하는 방식으로 학습이 진행 된다. 문장 시작부터 순차적으로 계산한다는 점에서 일방향을 보인다.

 

 

 

 

 

KoGPT2 skt-ai에서 만든 한글 디코더 모델. KoGPT2에서는 기존 GPT의 부족한 한국어 성능을 극복하기 위해 많은 데이터(40g)로 학습된 언어 모델로서 한글 문장 생성기에서 좋은 효과를 보인다고 한다. 시 생성, 가사 생성, 챗봇 등의 서비스 구현한 사례가 있다.

 

단순히 모델 사용보다 자연어를 어떻게 처리할지 많은 공부를 하게 됐다. 간단하게 정리한 부분을 추가적으로 공유하려고 한다.

 

자연어 처리로 할 수 있는 것들 

-텍스트 분류 (스팸 메일)

-감성 분석 (긍/부)

-내용 요약 (추출/ 생성)

-기계 번역 (번역)

-챗봇

 

 

 

 

출처 : dreamstime

자연어 처리 과정

-Preprocessing (전처리) : stopwords 불용어 제거, 형태소 분석, 표제어 추출 / 컴퓨터가 자연어를 처리할 수 있게

-Vectorization (벡터화)  : 원핫인코딩, count vectorization, tfdif, padding

-Embedding : word2vec, doc2vec, glove, fasttext

-Modeling : gru, lstm. attention

 

*Transfer learning (전이 학습) : pretrain한 임베딩을 다른 문제를 푸는데 재사용 

*Fine-tuning (파인 튜닝) : pretrain된 모델을 업데이트하는 개념. / 엔드투엔드에서 발전

 

 

 

임베딩

- 자연어를 숫자의 나열인 벡터로 바꾼 결과 혹은 과정 전체 (벡터 공간에 끼워넣는다)

- 말뭉치의 의미, 문법 정보가 응축되어 있음, 단어/문서 관련도 계산 가능

- 품질이 좋으면 성능이 높고 converge(수렴)도 빠르다

- NPLM(최초) / Word2Vec(단어수준) / ELMo(문장수준), BERT, GPT

 

단어 문장간 관련도 예상 / t-SNE 차원 축소 100차원->2차원으로 / Word2Vec 개선 모델 FastText / 행렬 분해 모델 / 에측 기반 방법 / 토픽 기간 방법 등으로 나뉨

 

잠재의미분석 : 말뭉치의 통계량을 직접적으로 활용

희소 행렬 - 행렬 대부분의 요소 값 0

단어-문서행렬, TF-IDF, 단어-문맥 행렬, 점별 상호정보량 행렬

 

 

단어수준 임베딩 단점 : 동음이의어 분간 어려움 

=> ELMo, BERT, GPT 시퀀스 전체의 문맥적 의미 함축해서 전이학습 효과가 좋음

 

*다운스트림 태스크 : 풀고 싶은 자연어 처리의 구체적 문제들 

(품사 판별, 개체명 인식, 의미역 분석, 형태소 분석, 문장 성분 분석, 의존 관계 분석, 의미역 분석, 상호참조 해결)

*업스트팀 태스크 : 다운스트렘 태스크 이전에 해결해야할 괴제. 단어/문장 임베딩을 프리트레인하는 작업

 

토큰 : 단어, 형태소, 서브워드

토크나이즈 : 문장을 토큰 시퀀스로 분석

형태소 분석 : 문장을 형태소 시퀀스로 나누는 과정

 

 

 

 

출처 : 벡터가 어떻게 의미를 가질까?

TF-IDF : 백오브워즈 가정(어떤 단어가 많이 쓰였는가) / term frequency inverse document

순서 정보는 무시하는 특징이 있다. 주제가 비슷하면 단어 빈도 또는 단어 비슷할 것이다. (정보 검색 분야에서 많이 쓰인다.)

사용자 질의에 가장 적절한 문서 보여줄 때 코사인 유사도를 구해서 보여준다.

 

-TF : 특정 문서에 얼마나 많이 쓰이는지

-DF : 특정 단어가 나타난 문서의 수

-IDF : 전체 문서를 해당 단어의 DF로 나눈 뒤 로그를 취함. 값이 클수록 특이 단어

(단어의 주제 예측 능력과 직결 됨)

 

 

 

출처 : 브런치

ELMo, GPT : 단어가 어떤 순서로 쓰였는가? 주어진 단어 시퀀스 다음에 단어가 나올 확률이 어떤게 큰지? 

n-gram (말뭉치 내 단어들을 n개씩 묶어서 빈도를 학습), 다음 단어 나타날 확률 조건부확률의 정의를 활용해 최대우도추정법으로 유도 => 한 번도 나오지 않으면 확률이 0이 되므로 보완을 해줘야 한다

 

마코프 가정 (한 상태의 확률은 그 직전 상태에만 의존한다) => 그래도 등장하지 않았던 단어 나오면 0이 되기 때문에 백오프, 스무딩 방식 (높은 빈도를 가진 문자열 등장확률을 일부 깎고, 등장하지 않은 케이스에 확률 부여

 

뉴럴 네트워키 기반 언어 모델 : 다음 단어를 맞추는 과정 학습 (엘모,지피티) 

마스크 언어 모델 : 문장 전체를 보고 중간에 있는 맞추기 (BERT)

 

 

 

 

출처 : Towards Data Scince

Word2Vec : 어떤 단어가 같이 쓰였는가 (분포 가정) 단어의 의미는 곧 그 언어에서의 활용이다?

타깃단어와 그 주위에 등장하는 문맥단어 계산 / 분포 정보가 곧 의미? 의문점

형태소 분류 - 계열 관계 : 해당 형태소 자리에 다른 형태소가 대치 될 수 있는지

품사 분류 – 기능(주어, 서술어), 의미(같은 뜻), 형식(이름, 성질, 상태)

형태는 같지만 기능과 의미가 달라질 수 있다.(기능과 분포는 다르지만 밀접한 관련)

PMI 두 단어의 등장이 독립일 때 대비해 얼마나 자주 같이 등장하는지 (단어 가중치) 단어-문맥 행렬

 

336x280(권장), 300x250(권장), 250x250, 200x200 크기의 광고 코드만 넣을 수 있습니다.

다섯 번째 프로젝트

 

1. 추천 시스템에 대한 생각

2. 추천시스템(TFIDF, Word2Vec)

3. GUI로 앱처럼 사용할 수 있게 (PyQt5)

 


드디어 마무리 단계에 왔다 ㅠㅠㅠ 티스토리 블로그 글을 작성하면서 파이널 프로젝트를 하는데 아직도 모르는게 태산이다. 파이널 프로젝트는 자연어(NLP)로 진행중인데, 왜 국문학과를 찾는지 알것 같다.

 

이번 프로젝트를 할 때, 후기 개수 자체가 부족하고, 과마다 특성 있는 키워드가 영화 리뷰처럼 다양하지 않아서(ex. OOO 원장님 너무 친절하고 좋아요. 아프지 않게 잘해주시고 병원이 깔끔해요. 등등) 힘들 것이라 예상을 했다. 결과는 예상대로 워드클라우드로 돌렸을 때 불용어처리할 것이 엄청 많았다. 그래서 추가적으로 팀원들이 후기를 one sentence로 만들 때 진료과목도 집어넣기는 했는데, 이게 얼마나 효과가 있을지는 잘 모르겠다.

 

이번에는 Django 대신에 PyQt5를 이용해서 GUI 앱을 만들었다. 저번에 해보자고 했는데 드디어.. 완성!

 

 

 

 

 

위키독스

온라인 책을 제작 공유하는 플랫폼 서비스

wikidocs.net

 

위키독스

온라인 책을 제작 공유하는 플랫폼 서비스

wikidocs.net

PyQt5 내용은 위키독스를 통해서 잘 배울 수 있다. 모르는 기능들을 하나하나 찾아서 구현이 됐다. 물론 심각한 노가다가 필요한 작업이라고 생각한다. Django, 안드로이드스튜디오 많은 시간이 필요하다.

 

 

 

 

우선 제일 첫번째 안 (다른 팀원)

- 검색기능 / 진료과목 카테고리 / 지역을 클릭하면 => 추천 병원과 병원 정보가 나오게 하는 것이다. 

 

 

 

 

두번째 안 (나)

- 검색기능 / 진료과목을 라디오버튼으로 클릭 => 추천 병원과 나에게 맞는 병원 리스트 담기 병원 정보 나오게 하기 

 

 

 

세번째 안 (절충안)

- 병원을 모를 수도 있기 때문에, 우선 진료과목과 지역을 먼저 선택하게 했다. 그후에 나오는 병원과 유사한 병원을 추가로 검색하고 싶으면 검색하게 만들었다. 그리고 홈페이지의 경우 url을 직접 복사붙여넣기 하는 것보다 바로가기로 만드는 것이 좋다고 생각하여 따로 뺐다.

 

 

 

 

우선 터미널에서 designer를 입력하여 Qt Designer를 실행시켜 ui를 만든다. 안드로이드스튜디오처럼 자신이 원하는 버튼이나 위젯을 끌어다 쓰고, 클래스 옆에 파이참에서 호출하기 쉬운 objectName을 지정해준다. 

 

우리가 구현했던 기능은 자동완성기능, 필터링 기능(지역 진료과목), url클릭시 바로 웹으로 넘어가기, 리스트내 요소를 클릭하여 정보 받아오는 기능, 추천기능, 리셋기능,  등이다. 간단해 보여도 간단하지 않고 시간이 꽤 걸렸다.

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import sys
from PyQt5.QtWidgets import *
from PyQt5.QtCore import QStringListModel
from PyQt5 import uic
import pandas as pd
from sklearn.metrics.pairwise import linear_kernel
from gensim.models import Word2Vec
from scipy.io import mmwrite, mmread
import pickle
import webbrowser
 
form_window = uic.loadUiType('plz_Yes_button_edit_3.ui')[0]
 
class Exam(QWidget, form_window):
    def __init__(self):
        super().__init__()
        self.setupUi(self)
 
###########################################
 
if __name__ == "__main__":
    app = QApplication(sys.argv)
    w = Exam()
    w.show()
    sys.exit(app.exec_())
 
cs

가장 기본적인 구성 - 본인이 만든 ui를 불러오는 코드부터 GUI를 실행시키는 코드까지

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
        #데이터 불러오기
        self.df_review = pd.read_csv('./datasets/model_data_Hospital_and_info2.csv',index_col=0)
        self.df_review.info()
        self.Tfidf_matrix = mmread('./models/tfidf_hospital_review_l.mtx').tocsr()
        self.embedding_model = Word2Vec.load('./models/word2VecModel_hospital_l2.model')
        with open('./models/tfidf_l.pickle''rb'as f:
            self.Tfidf = pickle.load(f)
 
        # 카테고리 목록 리스트화
        self.cmb_title_2.addItem('과를 선택하세요')
        category = list(self.df_review.category.unique()) #카테고리 중복 없이
        category = sorted(category)
 
        for c in category :
            self.cmb_title_2.addItem(c)
 
        # 지역 목록 리스트화
        self.cmb_title.addItem('지역을 선택하세요')
        add_list = []
        for i in self.df_review.addresses:
            a = i.split(' ')[0#지역이름만
            add_list.append(a)
 
        add_set = set(add_list) #중복 제거 위해 set
        address = list(add_set) #다시 list
        address = sorted(address)
        address.pop(0#지역 아닌 다른 단어가 있어서 pop
 
 
        for add in address:
            self.cmb_title.addItem(add) #지역 목록
 
        # 병원 목록과 진료과목 리스트로 만들기
        total = ''
        for c in self.df_review.clinics:
            total += c
 
        totals = total.split(', ')
        total_set = set(totals)
        total = list(total_set)  #진료 과목
        total = sorted(total)
 
        titles = list(self.df_review.names) # 병원 이름
        titles = sorted(titles) # 따로 정렬하는 이유는 병원 이름이 먼저 나오게 하기 위해서
 
        key_title = titles + total      #병원 + 진료 과목
 
cs

데이터, Tfidf, Word2Vec 모델을 불러오고 카테고리 리스트, 지역 목록 리스트, 병원 이름과 진료과목을 리스트로 만들었다. 공간을 크게 차지하지 않고 옵션을 선택할 수 있는 QComboBox에 리스트를 추가했다. 카테고리와 병원 목록은 쉽게 만들 수 있었으나, 지역의 경우 통일이 되지 않아서 따로 전처리를 하였다.

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#주소 통일
add_dic = {'강원도' : '강원','경기도':'경기','경상남도':'경남','경상북도':'경북','광주광역시':'광주','대구광역시':'대구','대전광역시''대전',
           '부산광역시''부산''서울시' :'서울','서울특별시':'서울','서초구':'서울시 서초구','수원시':'경기','인천광역시':'인천','전라북도':'전북','제주특별자치도':'제주','충청북도':'충북'}
add_list = list(add_dic)
 
list = []
for i in df_review.addresses :
    a = i.split(' ')
    if a[0in add_list :
        a[0= add_dic[a[0]]
    #print(a)
    a = ' '.join(a)
    list.append(a)
df_review.addresses = list
print(df_review.addresses.head(100))
df_review.to_csv('./model_data_Hospital_and_info2.csv')
cs

지역의 경우 17개 시도별로 나누려고 split으로 주소를 나눠 가장 첫번째 글자를 가져왔다. 그렇기 때문에 서울시, 서울, 서울특별시처럼 같은 지역인데 이름이 다를 경우 통일하였다. 다행히 크게 수작업을 해도 되지 않아서 안도의 한숨이...

 

 

 

1
2
3
4
5
        #자동완성
        model = QStringListModel()
        model.setStringList(list(key_title))
        completer = QCompleter()
        completer.setModel(model)
cs

자동완성 기능 생각보다 어렵지 않았다. from PyQt5.QtCore import QStringListModel 불러오고 QCompleter로 자동완성을 시켜주고 이걸 QLineEdit으로 받아줬다.

 

 

 

1
2
3
4
5
6
7
8
9
        # 버튼 함수
        self.le_title.setCompleter(completer)
        self.le_title.returnPressed.connect(self.btn_recommend_slot)
        self.btn_recommend.clicked.connect(self.btn_recommend_slot) # 엔터 또는 버튼 클릭시
        self.cmb_title_2.currentIndexChanged.connect(self.cmb_title_slot_2)
        self.cmb_title.currentIndexChanged.connect(self.cmb_title_slot)
        self.listWidget.itemClicked.connect(self.hospital_info)
        self.btn_html.clicked.connect(self.open_web)
        self.btn_recommend_5.clicked.connect(self.btn_clicked)
cs

버튼을 클릭하거나, 엔터를 누르거나, index가 변할 때 어떤 식으로 작동할지를 구현하는 준비단계?

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
    # 병원 지역별로 필터링
    def cmb_title_slot(self):
        print('지역 선택 클릭')
        self.le_title.clear() # 먼저 병원을 클릭 했을 때
        title = self.cmb_title_2.currentText()
        address = self.cmb_title.currentText()
 
        region = self.df_review[(self.df_review.category == title) &(self.df_review.region == address)].iloc[:101# 자체 추천 순위로 출력
        recommend = list(region)
        #print(recommend)
 
        self.listWidget.clear()
        self.listWidget.insertItems(0, recommend)
 
 
    # 카테고리 탑10 병원
    def cmb_title_slot_2(self):
        print('과 선택 클릭')
        title = self.cmb_title_2.currentText()
 
        top = self.df_review[self.df_review.category == title].iloc[:10,1]
        #recommend = '\n'.join(list(top)) # 이거는 lbl_result에
        recommend = list(top)
 
        self.listWidget.clear()
        self.listWidget.insertItems(0, recommend)
cs

지역 필터링, 병원 필터링 currentIndexChanged, index가 바뀌면 함수가 실행이 된다. 원래 cmb_title_slot1과 2를 바꿔야 하는데 처음에 설정을 그렇게 해서 지나갔다. 

 

현재 QComboBox에서 선택한 텍스트를 가져와야 필터링이 되기 때문에, currentText로 현재 텍스트를 가져왔다.  그리고 선택한  진료과목과 일치하는 탑10 병원을 listWidget에 출력하였다. QLineEdit으로 해도 되지만 나중에 병원 정보를 클릭해야 하기 때문에 안 된다. 그리고 list로 받아와서 0 번째 부터 다시 보여주는 코드를 실행했다. 마찬가지로 지역 설정을 바꿨을 경우, 우선 진료과목과 지역을 동시에 만족하는 병원을 추천하였다.

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
    # 병원을 클릭 했을 때, 병원 정보 보여주기
    def hospital_info(self):
        print('병원 정보 클릭')
        title = self.listWidget.currentItem().text()
 
        try :
            a = self.df_review[self.df_review.names == title].iloc[03].split(',')[:10# 주요 진료 과목 10개만
            a = ','.join(a)
            b = self.df_review[self.df_review.names == title].iloc[04# 주소
            c = self.df_review[self.df_review.names == title].iloc[06# 전화번호
            #d = self.df_review[self.df_review.names == title].iloc[0, 5] # 홈페이지 url / 홈페이지 오픈 버튼으로 대체
            recommend = '[ 주요 진료 과목 ]\n{0}\n\n[ 주소 ]\n{1}\n\n[ 전화번호 ]\n{2}'.format(a, b, c)
            self.infotext.setText(recommend)
            recommend = '홈페이지 바로가기 클릭!'
            self.btn_html.setText(recommend)
        except :
            pass
 
cs

어떻게 listWidget에 있는 아이템을 가져오나 했더니, 텍스트를 가져오는 것과 비슷하게 currentItem()으로 텍스트를 불러올 수 있었다.  크롤링을 할 때 조금 멍청하게 가져와서 전처리 과정을 한 번 더 거쳤다. 진료과목을 리스트 안에 집어넣었는데 이것을 그대로 csv에 집어넣어서 '[' 리스트가 문자가 됐다. 

 

a는 진료과목, b는 주소,  c는 전화번호, d는 홈페이지 url을 보여주려고 했으나 사용자가 따로 긁어야하는 불편함이 있어서 바로 홈페이지 오픈을 시켜주기로 했다. 

 

 

 

 

1
2
3
4
5
6
    # 홈페이지 오픈
    def open_web(self):
        print('홈페이지 바로가기 클릭')
        title = self.listWidget.currentItem().text()
        html = self.df_review[self.df_review.names == title].iloc[05]
        webbrowser.open(html) # 홈페이지 연동
cs

검색을 해보니 엄청 복잡하게 url을 오픈 하는 경우가 있는데, import webbroser를 하고 html을 open 하면 바로 url로 넘어가진다코딩을 하다보면 어떻게 하면 더 코드를 간단하게 짤까 고민을 하면서, 다른 사람이 짜놓은 코드와 비교를 하다보면 가끔 감탄을 할 때가 온다. 나도 누가 코드를 보고 감탄했으면 좋겠다는 마음이.. 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
    def btn_recommend_slot(self):
        print('추천 시스템 클릭')
        title = self.le_title.text()
 
        try:
            if title in list(self.df_review['names']):
                h_idx = self.df_review[
                    self.df_review['names']==title].index[0]
                cosine_sim = linear_kernel(
                    self.Tfidf_matrix[h_idx],
                    self.Tfidf_matrix)
                # recommend = '\n'.join(
                #     list(self.getRecommendation(cosine_sim))[1:])
                recommend = list(self.getRecommendation2(cosine_sim))[:-1]
 
            #elif title in total :
 
 
            else:
                print(title, '예외 키워드')
                sentence = [title] * 10
 
                sim_word = self.embedding_model.wv.most_similar(title, topn=10)
                labels = []
                for label, _ in sim_word:
                    labels.append(label)
                print(labels)
 
                for i, word in enumerate(labels):
                    sentence += [word] * (9 - i)
 
                sentence = ' '.join(sentence)
                sentence_vec = self.Tfidf.transform([sentence])
                cosine_sim = linear_kernel(sentence_vec,
                                           self.Tfidf_matrix)
                # recommend = '\n'.join(
                #     list(self.getRecommendation(cosine_sim))[:-1])
 
                recommend = list(self.getRecommendation2(cosine_sim))[:-1]
        except:
            if title :
                recommend =['검색어를 다시 확인해주세요']
                self.infotext.clear()
 
                default_text = '[ 주요 진료 과목 ]\n\n[ 주소 ]\n\n[ 전화번호 ]'
                self.infotext.setText(default_text)
 
            else:
                pass
        self.listWidget.clear()
        self.listWidget.insertItems(0, recommend)
cs

병원명을 정확히 입력했을 때와 진료과목 또는 다른 키워드를 입력했을 때, 그리고 검색어를 입력하지 않았을 때를 나눠서 진행했다. 

 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
    #키워드 기반 추천 시스템
    def getRecommendation2(self, cosine_sim):
        title = self.cmb_title_2.currentText()
        address = self.cmb_title.currentText()
        print(title, address)
        simScores = list(enumerate(cosine_sim[-1]))
        simScores = sorted(simScores, key=lambda x: x[1], reverse=True)
 
        if title == '과를 선택하세요' and address =='지역을 선택하세요':
            pass
        else :
            simlist = []
            for i in simScores :
                add = self.df_review.iloc[i[0],7# 지역
                tit = self.df_review.iloc[i[0],0# 카테고리
 
                if add == address and tit == title : # 지역, 카테고리 동시에 일치할 때만 추가
                    #print(add)
                    simlist.append(i)
 
            h_idx = [i[0for i in simlist[0:10]]
 
            if len(h_idx) == 0:
                RecHosptiallist = [f'{address} 지역에는 관련된 키워드가 없습니다.']
                return RecHosptiallist.names
            else :
                RecHosptiallist = self.df_review.iloc[h_idx]
                print(RecHosptiallist, '출력')
                return RecHosptiallist.names
 
        simScores = simScores[0:11]
        h_idx = [i[0for i in simScores]
        RecHosptiallist = self.df_review.iloc[h_idx]
        return RecHosptiallist.names
cs

검색을 했을 경우 유사한 병원을 추천하긴 하는데, 전혀 다른 진료과목이나 지역이 나오면 안 되기 때문에 여기서도 필터링 기능을 사용하였다. 모델의 아쉬운 점은 지방으로 갈 수록 후기도 많지 않고, 대부분 큰 병원들은 수도권에 몰려서 지방으로 갈수록 추천해줄만한 병원이 많지 않았다. 

 

 

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
    #리셋 기능
    def btn_clicked(self):
        print('리셋 버튼 클릭')
        self.cmb_title_2.clear()
        self.cmb_title.clear()
        self.le_title.clear()
        self.infotext.clear()
 
        #병원 정보 처음에 나오는 내용
        default_text = '[ 주요 진료 과목 ]\n\n[ 주소 ]\n\n[ 전화번호 ]'
        self.infotext.setText(default_text)
 
        category = list(self.df_review.category.unique())
        category = sorted(category)
        self.cmb_title_2.addItem('과를 선택하세요')
        self.cmb_title.addItem('지역을 선택하세요')
 
        add_list = []
        for i in self.df_review.addresses:
            a = i.split(' ')[0]
            add_list.append(a)
 
        add_set = set(add_list)
        address = list(add_set)
        address = sorted(address)
        address.pop(0)
 
        for add in address:
            self.cmb_title.addItem(add)  # 지역 목록
 
        for c in category:
            self.cmb_title_2.addItem(c)  # 카테고리 목록
cs

리셋버튼을 누르면 모든 것이 리셋이 되게 하려고 했다. 찾아보니 그런 코드가 있긴 있는데, 지금 GUI의 경우 지역 목록과 카테고리 목록은 남아야 해서 리셋을 누르는 동시에 다시 지역목록과 카테고리 목록이 뜨게 했다. 여기서 특히 오류가 많이 났는데, 어디서 호출을 해주느냐에 따라서 이게 중복 노출이 되는지, 부분 노출이 되는지 갈렸다.

 

아무튼 GUI 완성 ㅠㅠ

 

+ Recent posts